Skip to main content
Log in

Delivery of Plasmid DNA into Mammalian Cell Lines Using pH-Sensitive Liposomes: Comparison with Cationic Liposomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

We compare the transfection efficiency of plasmid DNA encoding either luciferase or (β-galactosidase encapsulated in pH-sensitive liposomes or non-pH-sensitive liposomes or DNA complexed with cationic liposomes composed of dioleoyloxypropyl-trimethylammonium:dioleoylphosphatidyl-ethanolamine (1:1, w/w) (Lipofectin) and delivered into various mammalian cell lines. Cationic liposomes mediate the highest transient transfection level in all cell-lines examined. pH-sensitive liposomes, composed of cholestryl hemisuccinate and dioleoylphosphatidylethanolamine at a 2:1 molar ratio, mediate gene transfer with efficiencies that are 1 to 30% of that obtained with cationic liposomes, while non-pH-sensitive liposome compositions do not induce any detectable transfection. Cationic liposomes mediate a more rapid uptake of plasmid DNA, to about an eightfold greater level than that obtained with pH-sensitive liposomes. The higher uptake of DNA mediated by Lipofectin accounts for part of its high transfection efficiency. Treatment of cells with chloroquine, ammonium chloride, or monensin decreases (threefold) transfection using pH-sensitive liposomes and either has no effect on or enhances cationic liposome-mediated transfection. Therefore plasma membrane fusion is not the only mechanism available to cationic liposomes; in certain cell lines DNA delivery via endocytosis is a possible parallel pathway and could augment the superior transfection efficiency observed with cationic liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Friedman. Progress toward human gene therapy. Science 244:1275–1281 (1989).

    Google Scholar 

  2. E. Gilboa, M. A. Eglitis, P. W. Kantoff, and W. French Anderson. Transfer and expression of cloned genes using retroviral vectors. Biotechniques 4:504–512 (1986).

    Google Scholar 

  3. M. A. Rosenfeld, W. Siegfried, K. Yoshimura, K. Yoneyama, M. Fukayama, L. E. Stier, P. K. Paakko, P. Gilardi, L. D. Stratford-Perricaudet, M. Perricaudet, S. Jallat, A. Pavirani, J. P. Lecocq, and R. G. Crystal. Adenovirus-mediated transfer of a recombinant alpha1-antitrypsin gene to the lung epithelium in vivo. Science 252:431–434 (1991).

    Google Scholar 

  4. H. M. Temin. Safety considerations in somatic gene therapy of human disease with retrovirus vectors. Hum. Gene Ther. 1:111–123 (1990).

    Google Scholar 

  5. P. L. Felgner and G. Rhodes. Gene Therapeutics. Nature 349:351–352 (1991).

    Google Scholar 

  6. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: A highly efficient, lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA 84:7413–7417 (1987).

    Google Scholar 

  7. P. L. Felgner. Particulate systems and polymers for in vitro and in vivo delivery of polynucleotides. Adv. Drug Deliv. Rev. 5:163–187 (1990).

    Google Scholar 

  8. G. Y. Wu and C. H. Wu. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 263:14621–14624 (1988).

    Google Scholar 

  9. G. Y. Wu and C. H. Wu. Delivery systems for gene therapy. Biother. 3:87–95 (1991).

    Google Scholar 

  10. J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Felgner. Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468 (1990).

    Google Scholar 

  11. R. M. Straubinger, N. Düzgünes, and D. Papahadjopoulos. pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett. 179:148–154 (1985).

    Google Scholar 

  12. J. Connor and L. Huang. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res. 46:3431–3435 (1986).

    Google Scholar 

  13. C. J. Chu, J. Dijkstra, M. Z. Lai, K. Hong, and F. C. Szoka. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm. Res. 7:824–834 (1990).

    Google Scholar 

  14. N. Düzgünes, J. A. Goldstein, D. S. Friend, and P. L. Felgner. Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleoyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry 28:9179–9184 (1989).

    Google Scholar 

  15. J. R. De Wet, K. V. Wood, M. De Luca, D. R. Helinski, and S. Subramani. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737 (1987).

    Google Scholar 

  16. A. R. Brasier, J. E. Tate, and J. F. Habener. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7:1116–1122 (1989).

    Google Scholar 

  17. G. R. Mc Gregor and C. T. Caskey. Construction of plasmids that express E. coli β-galactosidase in mammalian cells. Nucleic Acids Res. 17:2365–2370 (1989).

    Google Scholar 

  18. J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  19. F. C. Szoka and D. Papahadjopoulos. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75:4194–4198 (1978).

    Google Scholar 

  20. G. R. Bartlett. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468 (1959).

    Google Scholar 

  21. G. R. Me Gregor, A. E. Mogg, J. F. Burke, and C. T. Caskey. Histochemical staining of clonal mammalian cell lines expressing E. coli β galactosidase indicates heterogeneous expression of the bacterial gene. Somat. Cell. Mol. Genet. 13,253–265 (1987).

    Google Scholar 

  22. M. Gross-Bellard, P. Oudet, and P. Chambon. Isolation of high-molecular-weight DNA from mammalian cells. Eur. J. Biochem. 36:32–38 (1973).

    Google Scholar 

  23. E. M. Southern. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517 (1975).

    Google Scholar 

  24. C. Y. Wang and L. Huang. Plasmid DNA adsorbed to pH-sensitive liposomes efficiently transforms the target cells. Biochem. Biophys. Res. Commun. 147:980–985 (1987).

    Google Scholar 

  25. F. R. Maxfield. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J. Cell Biol. 95:676–681 (1982).

    Google Scholar 

  26. R. Fraley, R. M. Straubinger, G. Rule, E. L. Springer, and D. Papahadjopoulos. Liposome-mediated delivery of deoxyribonucleic acid to cells: Enhanced efficiency of delivery related to lipid composition and incubation conditions. Biochemistry 20:6978–6987 (1981).

    Google Scholar 

  27. F. C. Szoka, K. Jacobson, Z. Derzko, and D. Papahadjopoulos. Fluorescence studies on the mechanism of liposome-cell interactions in vitro. Biochim. Biophys. Acta 600:1–18 (1980).

    Google Scholar 

  28. F. C. Szoka. The cellular availability of liposome-encapsulated agents: Consequences for drug therapy. In K. Yagi (ed.), Medical Application of Liposomes, Japan Scientific Societies Press, Tokyo, 1986, pp. 21–30.

    Google Scholar 

  29. R. J. Mannino and S. Gould-Fogerite. Liposome mediated gene transfer. Biotechniques 6:682–690 (1988).

    Google Scholar 

  30. H. Ellens, J. Bentz, and F. C. Szoka. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: Role of bilayer contact. Biochemistry 23:1532–1538 (1984).

    Google Scholar 

  31. C. Y. Wang and L. Huang. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 28:9508–9514 (1989).

    Google Scholar 

  32. C. Y. Wang and L. Huang. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc. Natl. Acad. Sci. USA 84:7851–7855 (1987).

    Google Scholar 

  33. M. R. Cappechi. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–485 (1980).

    Google Scholar 

  34. D. S. Friend, R. J. Debs, and N. Düzgünes. Interaction between DOTMA liposomes, CV-1 and U937 cells and their isolated nuclei. 30th annual meeting of the American Society for Cell Biology, San Diego. J. Cell Biol. 111:119a, abstr. 663 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legendre, JY., Szoka Jr, F.C. Delivery of Plasmid DNA into Mammalian Cell Lines Using pH-Sensitive Liposomes: Comparison with Cationic Liposomes. Pharm Res 9, 1235–1242 (1992). https://doi.org/10.1023/A:1015836829670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015836829670

Navigation