Skip to main content
Log in

Effect of Polyethylene Glycol 400 on the Intestinal Permeability of Carbamazepine in the Rabbit

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Because of the limited solubility of carbamazepine, aqueous solutions are usually prepared using glycols as cosolvents. This research focuses on the effect of varying the composition of polyethylene glycol 400 (PEG-400) in aqueous solutions on rabbit intestinal permeability of carbamazepine in the duodenojejunum and the ascending colon using an in situ perfusion technique. In both segments the intestinal permeability varied inversely with the percentage of PEG-400, when the concentration of carbamazepine in the perfusing solution was maintained constant. The decreased permeability may be explained by a reduction in the thermodynamic activity of carbamazepine with increased concentrations of PEG-400, as well as by reverse solvent drag because of the hyperosmolarity of the perfusing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Bertilsson and T. Tomson. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. Clin. Pharmacokinet. 11:177–198 (1986).

    Google Scholar 

  2. J. W. Faigle, S. Brechbuhler, K. F. Feldmann, and W. J. Richter. The biotransformation of carbamazepine. In W. Birkmayer (ed.), Epileptic Seizures-Behaviour-Pain, Hans Huber, Bern, 1976, pp. 127–140.

    Google Scholar 

  3. M. Sumi, N. Watari, O. Umezawa, and N. Kaneniwa. Pharmacokinetic study of carbamazepine and its epoxide metabolite in humans. J. Pharmaco-bio-Dyn. 10:652–661 (1987).

    Google Scholar 

  4. R. H. Levy, W. H. Pitlick, A. S. Troupin, J. R. Green, and J. M. Neal. Pharmacokinetics of carbamazepine in normal man. Clin. Pharmacol. Ther. 17:657–668 (1975).

    Google Scholar 

  5. R. H. Levy, J. S. Lockard, J. R. Green, P. Friel, and L. Maris. Pharmacokinetics of carbamazepine in monkeys following intravenous and oral administration. J. Pharm. Sci. 64:302–307 (1975).

    Google Scholar 

  6. M. Sumi, N. Watari, H. Naito, O. Umezawa, and N. Kaneniwa. Influence of phenobarbital on pharmacokinetics of carbamazepine and its epoxide in the rabbit. Yakugaku Zasshi 107:984–991 (1987).

    Google Scholar 

  7. P. J. Wedlund and R. H. Levy. Time-dependent kinetics. VII. Effect of diurnal oscillations on the time course of carbamazepine autoinduction in the rhesus monkey. J. Pharm. Sci. 72:905–909 (1983).

    Google Scholar 

  8. W. H. Pitlick and R. H. Levy. Time-dependent kinetics. I. Exponential autoinduction of carbamazepine in monkeys. J. Pharm. Sci. 66:647–649 (1977).

    Google Scholar 

  9. I. H. Patel and R. H. Levy. Intramuscular absorption of carbamazepine in rhesus monkeys. Epilepsia 21:103–109 (1980).

    Google Scholar 

  10. I. H. Patel, P. J. Wedlund, and R. H. Levy. Induction effect of phenobarbital on the carbamazepine to the carbamazepine-10,11-epoxide pathway in rhesus monkeys. J. Pharmacol. Exp. Ther. 217:555–558 (1981).

    Google Scholar 

  11. N. F. H. Ho and W. I. Higuchi. Theoretical model studies of intestinal drug absorption. IV. Bile acid transport at perimicellar concentrations across diffusion layer-membrane barrier. J. Pharm. Sci. 63:686–690 (1974).

    Google Scholar 

  12. N. F. H. Ho, J. Y. Park, P. F. Ni, and W. I. Higuchi. Advancing quantitative and mechanistic approaches in interfacing gastrointestinal drug absorption studies in animals and humans. In W. Crouthamel and A. C. Sarapu (eds.), Animal Models for Oral Drug Delivery in Man, APhA, Washington, D.C., 1983, pp. 27–106.

    Google Scholar 

  13. R. J. Sawchuk and W. M. Awni. Absorption of cyclosporine from rabbit small intestine in situ. J. Pharm. Sci. 75:1151–1156 (1986).

    Google Scholar 

  14. J. T. Doluisio, G. H. Tan, N. F. Billups, and L. Diamond. Drug absorption. II. Effect of fasting on intestinal drug absorption. J. Pharm. Sci. 58:1200–1202 (1969).

    Google Scholar 

  15. L. E. Riad and R. J. Sawchuk. Simultaneous determination of carbamazepine and its epoxide and transdiol metabolites in plasma by microbore liquid chromatography. Clin. Chem. 33:1863–1866 (1988).

    Google Scholar 

  16. I. Johno, K. Kawakatsu, H. Kuwata, and S. Kitazawa. Segmental differences in transmucosal fluid movement and its effect on gastrointestinal drug absorption in rabbits. Int. J. Pharm. 25:255–263 (1985).

    Google Scholar 

  17. S. Kitazawa, H. Ito, and H. Sezaki. Transmucosal fluid movement and its effect on drug absorption. Chem. Pharm. Bull. 23:1856–1865 (1975).

    Google Scholar 

  18. V. S. Chadwick, S. F. Phillips, and A. F. Hoffman. Measurement of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). I. Chemical analysis and biological properties. Gastroenterology 73:241–246 (1977).

    Google Scholar 

  19. V. S. Chadwick, S. F. Phillips, and A. F. Hoffman. Measurement of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man. Gastroenterology 73:247–251 (1977).

    Google Scholar 

  20. J. R. Pappenheimer and K. E. Zich. Absorption of hydrophilic solutes from the rat small intestine. J. Physiol. (London) 371:138P (1985).

    Google Scholar 

  21. J. R. Pappenheimer and K. Z. Reiss. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membrane Biol. 100:123–136 (1987).

    Google Scholar 

  22. N. Lifson and A. A. Hakim. Simple diffusive-convective model for intestinal absorption of a nonelectrolyte (urea). Am. J. Physiol. 211:1137–1146 (1966).

    Google Scholar 

  23. N. Lifson, L. M. Gruman, and D. G. Levitt. Diffusive-convective models for intestinal absorption of D2O. Am. J. Physiol. 215:444–454 (1968).

    Google Scholar 

  24. A. Karino, M. Hayashi, T. Horie, S. Awazu, H. Minami, and M. Hanano. Solvent drag effect in drug intestinal absorption. I. Studies on drug and D2O absorption clearances. J. Pharm. Dyn. 5:410–417 (1982).

    Google Scholar 

  25. A. Karino, M. Hayashi, S. Awazu, and M. Hanano. Solvent drag effect in drug intestinal absorption. II. Studies on drug absorption clearance and water influx. J. Pharm. Dyn. 5:670–677 (1982).

    Google Scholar 

  26. O. Kedem and A. Katchalsky. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45:143–179 (1961).

    Google Scholar 

  27. H. Kameda, T. Abei, S. Nasrallah, and F. L. Iber. Functional and histological injury to intestinal mucosa produced by hypertonicity. Am. J. Physiol. 214:1090–1095 (1968).

    Google Scholar 

  28. A. J. Bryan, R. Kaur, G. Robinson, N. W. Thomas, and C. G. Wilson. Histological and physiological studies on the intestine of the rat exposed to solutions of Myrij 52 and PEG 2000. Int. J. Pharm. 7:145–156 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riad, L.E., Sawchuk, R.J. Effect of Polyethylene Glycol 400 on the Intestinal Permeability of Carbamazepine in the Rabbit. Pharm Res 8, 491–497 (1991). https://doi.org/10.1023/A:1015803312233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015803312233

Navigation