Skip to main content
Log in

Estimating the p-Variation Index of a Sample Function: An Application to Financial Data Set

  • Published:
Methodology And Computing In Applied Probability Aims and scope Submit manuscript

Abstract

In this paper we apply a real analysis approach to test continuous time stochastic models of financial mathematics. Specifically, fractal dimension estimation methods are applied to statistical analysis of continuous time stochastic processes. To estimate a roughness of a sample function we modify a box-counting method typically used in estimating fractal dimension of a graph of a function. Here the roughness of a function f is defined as the infimum of numbers p > 0 such that f has bounded p-variation, which we call the p-variation index of f. The method is also tested on estimating the exponent α∈[1, 2] of a simulated symmetric α-stable process, and on estimating the Hurst exponent H ∈ (0, 1) of a simulated fractional Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. M. Berman, “Harmonic analysis of local times and sample functions of Gaussian processes,” Trans. Amer. Math. Soc. vol. 143 pp. 269-281, 1969.

    Google Scholar 

  • A. Bick and W. Willinger, “Dynamic spanning without probabilities,” Stoch. Proc. Appl. vol. 50 pp. 349-374, 1994.

    Google Scholar 

  • R. M. Blumenthal and R. K. Getoor, “Sample functions of stochastic processes with stationary independent increments,” J. Math. and Mech. vol. 10 pp. 493-516, 1961.

    Google Scholar 

  • R. M. Blumenthal and R. K. Getoor, “The dimension of the set of zeros and the graph of a symmetric stable process,” Illinois J. Math. vol. 6 pp. 308-316, 1962.

    Google Scholar 

  • J. Y. Campbell, A. W. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press: New Jersey, 1997.

    Google Scholar 

  • P. H. Carter, R. Cawley, and R. D. Mauldin, “Mathematics of dimension measurement for graphs of functions,” in Fractal Aspects of Materials: Disordered Systems (D. A. Weitz, L. Sander and B. Mandelbrot, eds), Material Research Society, US, pp. 183-186, 1988.

    Google Scholar 

  • J. M. Chambers, C. L. Mallows, and B. W. Stuck, “A method for simulating stable random variables,” J. Amer. Statist. Assoc. vol. 71no. 354, pp. 340-344, 1976.

    Google Scholar 

  • H. Cramer and M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley: New York, 1967.

    Google Scholar 

  • M. E. Crovella and M. S. Taqqu, “Estimating the heavy tail index from scaling properties,” Meth. and Comp. in Appl. Probab. vol. 1 pp. 55-79, 1999.

    Google Scholar 

  • C. D. Cutler, “A review of the theory and estimation of fractal dimension,” in Dimension Estimation and Models (H. Tong, ed.) World Scientific, Singapore, pp. 1-107, 1993.

    Google Scholar 

  • B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker, “Evaluating the fractal dimension of profiles,” Physical Review A vol. 39 pp. 1500-1512, 1989.

    Google Scholar 

  • R. M. Dudley and R. Norvaisa, Differentiability of Six Operators on Nonsmooth Functions and p-Variation, Lect. Notes in Math. 1703, Springer: Berlin, 1999.

    Google Scholar 

  • H. Fölmer, “Calcul d'Itô sans probabilités,” in Séminaire de Probabilités XV, (J. Azéma and M. Yor, eds) Lect. Notes in Math. 850, Springer, pp. 143-150, 1981.

  • E. G. Gladyshev, “A new limit theorem for stochastic processes with Gaussian increments,” Theor. Probability Appl. vol. 6 pp. 52-61, 1961.

    Google Scholar 

  • P. Hall and A. Wood, “On the performance of box-counting estimators of fractal dimension,” Biometrika vol. 80, pp. 256-252, 1993.

    Google Scholar 

  • N. C. Jain and D. Monrad, “Gaussian measures in B p,” Ann. Probab. vol. 11 pp. 46-57, 1983.

    Google Scholar 

  • N. Kôno, “Hausdorff dimension of sample paths for self-similar processes,” in Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds), Birkhäuser, Boston, pp. 109-117, 1986.

    Google Scholar 

  • R. E. Maeder, “Fractional Brownian motion,” Mathematica J. vol. 6 pp. 38-48, 1995.

    Google Scholar 

  • B. B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, Selecta volume E, Springer: New York, 1997.

    Google Scholar 

  • I. Monroe, “On the γ-variation of processes with stationary independent increments,” Ann. Math. Statist. vol. 43 pp. 1213-1220, 1972.

    Google Scholar 

  • U. A. Müller, M. M. Dacorogna, R. D. Davé, O. V. Pictet, R. B. Olsen, and J. R. Ward, “Fractals and intrinsic time—a challenge to econometricians,” Internal document UAM. 1993-08-16, Olsen & Associates: Switzerland, 1995. http://www.olsen.ch

    Google Scholar 

  • R. Norvaiša, “Modelling of stock price changes: A real analysis approach,” Finance and Stochastics vol. 4 pp. 343-369, 2000.

    Google Scholar 

  • R. Norvaiša, “Quadratic variation, p-variation and integration with applications to stock price modelling,” The Fields Institute, 2001.

  • R. Norvaiša and D. M. Salopek, “Estimating the Orey index of a Gaussian stochastic process with stationary increments: An application to financial data set,” in Stochastic Models, Proc. Int. Conf., Ottawa, Canada, June 10–13, 1998, (L. G. Gorostiza and B. G. Ivanoff, eds), Canadian Math. Soc., Conference Proceedings, vol. 26 pp. 353-374, 2000.

  • R. Norvaiša and D. M. Salopek, “Supplement to the present paper, containing codes in Mathematica,” 2000b (available from the authors upon request).

  • S. Orey, “Gaussian sample functions and the Hausdorff dimension of level crossings,” Z. Wahrsch. verw. Gebiete vol. 15 pp. 249-256, 1970.

    Google Scholar 

  • W. E. Pruit and S. J. Taylor, “Sample path properties of processes with stable components,” Z. Wahrsch. verw. Geb. vol. 12 pp. 267-289, 1969.

    Google Scholar 

  • V. M. Zolotarev, “One-dimensional stable distributions,” Translations of Mathematical Monographs vol. 65 American Mathematical Society, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norvaiša, R., Salopek, D.M. Estimating the p-Variation Index of a Sample Function: An Application to Financial Data Set. Methodology and Computing in Applied Probability 4, 27–53 (2002). https://doi.org/10.1023/A:1015753313674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015753313674

Navigation