Skip to main content
Log in

HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Nine Tibetan weedrace, 9 Xingjiang rice wheat and 14 Yunnan hulled wheat accessions were evaluated for the variability of HMW-glutenins and gliadins. Higher variability was observed for both HMW-glutenins and gliadins in Tibetan weedrace and Xingjiang rice wheat, while lower variability was observed in Yunan hulled wheat. There were 4 HMW-glutenin and 9 gliadin patterns in 9 Tibetan weedrace accessions, 5 HMW-glutenin and 8 gliadin patterns in 9 Xingjiang rice wheat accessions, and 3 HMW-glutenin and 8 gliadin patterns in 14 Yunnan hulled wheat accessions. In Xinjiang rice wheat, one accession (i.e. Daomai 2) carried subunits 2.1 + 10.1 encoded by Glu-D1, which is very rare in common wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chen Q., Sun Y. and Dong Y. 1985. Cytogenetic studies on interspecific hybrids of Xingjiang wheat (in Chinese). Acta Agronomica Sinica 11: 23–28.

    Google Scholar 

  • Chen P.D., Jiu D.J., Pei G.Z., Qi L.L. and Huang L. 1988. The chromosome constitution of three endemic hexaploid wheats in Western China. In: Miller T.E. and Koebner R.M.D. (eds), Proc. 7th Intern. Wheat Genet. Symp., Cambridge, England. vol 1:, pp. 75–80.

  • Ciaffi M., Lifiandra D., Porceddu E. and Benedettelli S. 1993. Storage protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theor. Appl. Genet. 86: 474–480.

    Google Scholar 

  • Cooke R.J. 1987. The classification of wheat cultivars using a standard reference electrophoresis method. J. Nat. Agric. Bot. 17: 273–281.

    Google Scholar 

  • Dong Y.S., Zheng D.S., Qiao D.Y., Zeng X.Q., En Z.C. and Chen X.R. 1981. Investigation and study on Yunnan wheat (Triticum aestivum ssp. yunnanense King) (in Chinese). Acta Agronomica Sinica 7: 145–151.

    Google Scholar 

  • Dvořák J., Luo M.C., Yang Z.L. and Zhang H.B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97: 657–670.

    Google Scholar 

  • Lafiandra D., Benedettelli S., Spagnoletti Z.P.L. and Porceddu E. 1983. Genetical aspects of durum wheat gliadins. In: Porceddu E. (ed.), Breeding Methodologies in Durum Wheat and Triticale. Tuscia University Press, Viterbo, Italy:, pp. 29–37.

    Google Scholar 

  • Lafiandra D., Kasarda D.D. and Morris R. 1984. Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars Cheyenne and Chinese Spring by two-dimensional (two-PH) electrophoresis. Theor. Appl. Genet. 68: 531–539.

    Google Scholar 

  • Lagudah E.S. and Halloran G.M. 1988. Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. I. Variation in HMW subunits of glutenin and gliadins. Theor. Appl. Genet. 75: 592–598.

    Google Scholar 

  • Mecham D.K., Kasarda D.D. and Qualset C.O. 1978. Genetic aspects of wheat gliadin proteins. Biochem. Genet. 16: 831–853.

    Google Scholar 

  • Ng P.K.W. and Bushuk W. 1987. Glutenin of Marquis wheat as a reference for estimating molecular weights of glutenin subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem. 64(4): 324–327.

    Google Scholar 

  • Payne P.I. 1987. The genetical basis of bread-making quality in wheat. Aspects Appl. Biol. 15: 79–90.

    Google Scholar 

  • Payne P.I., Holt L.M., Worland A.J. and Law C.N. 1982. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Part 3. Telocentric mapping of the subunit genes on the long arm of the homoeologous group 1 chromosomes. Theor. Appl. Genet. 63: 129–138.

    Google Scholar 

  • Payne P.I. and Lawrence G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A 1, Glu-B 1, and Glu-D 1which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29–35.

    Google Scholar 

  • Riley R., Coucoli H. and Chapman V. 1967. Chromosomal interchanges and the phylogeny of wheat. Heredity 22: 233–248.

    Google Scholar 

  • Shao Q.Q., Li C.S. and Basang C.R. 1980. Semi-wild wheat from Xizang (Tibet) (in Chinese). Acta Genetica Sinica 7: 150–156.

    Google Scholar 

  • Sozinov A.A. and Poperelya F.A. 1980. Genetic classification of prolamines and its use for plant breeding. Ann. Technol. Agric. 29: 229–245.

    Google Scholar 

  • Ward R.W., Yang Z.L., Kim H.S. and Yen C. 1998. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor. Appl. Genet. 96: 312–318.

    Google Scholar 

  • Wei Y.M., Zheng Y.L., Liu D.C., Zhou Y.H. and Lan X.J. 2000. Gliadin and HMW-glutenin variations in Triticum turgidum L. ssp. turgidum and T. aestivum L. landraces native to Sichuan, China. Wheat Infor. Ser. 90: 13–20.

    Google Scholar 

  • Yang W.Y., Yen C. and Yang J.L. 1992. Cytogenetic study on the origin of some special Chinese landraces of common wheat. Wheat Infor. Ser. 75: 14–20.

    Google Scholar 

  • Yen C., Luo M.C. and Yang J.L. 1988. The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu-guang tou and other landraces of White Wheat Complex from China. In: Miller T.E. and Koebner R.M.D. (eds), Proc. 7th Intern. Wheat Genet. Symp., Cambridge, England. vol. 1, pp. 175–179.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, YM., Zheng, YL., Liu, DC. et al. HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genetic Resources and Crop Evolution 49, 327–330 (2002). https://doi.org/10.1023/A:1015544403431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015544403431

Navigation