Skip to main content
Log in

Bulbs mycoflora and their relation with three stored product mites

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The distribution of moulds on stored and field onion and garlic plants infested by bulb mites in Assiut area (Egypt) was studied using PDA medium at 28 °C. Among 40 host samples and the three mite species tested no significant difference was noted in the contamination by moulds. A total of 20 species appertaining to 11 genera were identified from the tested mites and their habitats. The predominant moulds on all samples were “storage moulds” from the genera Aspergillus (A. niger, A. versicolor)and Penicillium (P. chrysogenum, P. funiculosum,and ``field moulds'' among which Alternaria, Cladosporium,Fusarium (and its teleomorphs) and Setosphaeria were encountered most frequently. One fungus well known facultative pathogen was obtained: Beauveria bassiana. The tested mites transferA. niger, N. haematococca, R. stolonifer andP. chrysogenum outside their bodies while, A. flavusand A. ochraceus transfer through their digestive tracts along with the foods. Individuals of all mites could survived till the end of the experiment on all fungal species tested except A. niger, A. ochraceus and A. sydowii.Among 48 isolates screened for their ability to produce chitinase, about 83% of the isolates could produce this enzyme. Most of the positive isolates (17 isolates) had moderate producers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen CM. Loss of viability in storage microflora. Seed Sci & Technol 1973; 1: 547–562.

    Google Scholar 

  2. King AD Jr, Schade JE. Alternaria toxins and their importance in food. J Food Protect 1984; 47: 886–901.

    CAS  Google Scholar 

  3. Hughes AM. The mites of stored food. Min Agr Fish Food London Tech Bull 1961; 9: 287.

    Google Scholar 

  4. Hughes AM. The mites of stored food and houses, Min Agr Fish Food London Tech Bull 1976; 9: 400.

    Google Scholar 

  5. Rack G, Ruling G. Uber das Vorkommen der Modermilbe, Tyrophagus putrescentiae (Schrank) in Blattgallen der Reblans, Dactylosphaera vitifolii Shimer, Sonderdruck aus der Zeitschrift VITIS 1978; 17: 54–66.

    Google Scholar 

  6. Eraky SA. Observations on the biology of two species of acarid mites. Folia ent Hung 1987; 48: 21–27.

    Google Scholar 

  7. Eraky SA, Shoker NI. Mites extracted from uprooted banana suckers (Acari: Anaetidae). Folia ent Hung 1993; 54: 51–56.

    Google Scholar 

  8. Eraky SA, Shoker NI. Two new deutonymphs of the genus Histiostoma Kramer 1876 (Acari: Histiostomidae) existing in stored onions. Assiut J Agric Sci 1994; 25(2): 163–168.

    Google Scholar 

  9. Eraky SA. Some biological aspects of Tyrophagus putrescentiae (Schrank) (Acarina Acaridae). Assiut J Agric Sci 1992; 23: 101–112.

    Google Scholar 

  10. Eraky SA. Mahunkaglyphus solimani gen. and sp. n. and three new species (Acari: Astigmata) described from termite nests, western desert, Egypt. Folia ent Hung 1998; 31: 241–250.

    Google Scholar 

  11. Sinha RN, Brownswijk van JEMH, Wallace HAH. House dust allergy, mites and their fungal associations. Can Med Assoc J 1970; 103: 300–301.

    PubMed  CAS  Google Scholar 

  12. Chirila M. Capetti E, Banescu O. The relationship between air-born fungal spores and Dermatophagoides pteronysinus in the house dust. Rev Roum Med-Intere 1981; 19: 73–77.

    CAS  Google Scholar 

  13. Bulla LA, Kramer KJ, Speirs RD. Insects and microorganisms in stored grain and their control. In: Y. Pomeranz, ed. Advanced in Cereal Science and Technology, 1978; 2: 91–97. Am. Assoc. Cereal Chem., Minnesota: St. Paul.

    Google Scholar 

  14. Sakagami Y, Taki K, Matsuhisa T, Marumo S. Identification of 2-deoxyecdysome from the mite Tyrophagus putrescentiae. Experientia 1992; 48(8): 793–795.

    Article  CAS  Google Scholar 

  15. Charnley AK. Physiological aspects of destructive pathogenesis in insects by fungi. A speculative review. In: JM Anderson, ADM Rayner and DWH Walton, eds. Invertebrate-Microbial Interactions. Brit Mycol Soc Symp, 1984; 6: 229–270. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Johnson LF, Curl EA. Methods for research on ecology of soilborn pathogens. Minneapolis: Burgess Publishing Co., 1972; 247.

    Google Scholar 

  17. Smith NR, Dawson VT. The bacteriostatic action of rose bengal in media used the plate count of soil fungi. Soil Science 1944; 58: 467–471.

    CAS  Google Scholar 

  18. Thomas GM, Poinar GO. Report of diagnoses of diseased insects, 1962—1972. Hilgardia 1973; 42(8): 261–360.

    Google Scholar 

  19. Kmitowa K. Characteristics of strains of Paecilomyces farinosus (Dicks.) Brown et Smith. Pol Ecol Stud 1982; 8(3—4): 419–431.

    Google Scholar 

  20. Andersen A. Microfungi in beds and their relation to housedust mites. Grana 1985; 24: 55–59.

    Article  Google Scholar 

  21. Zoberi MH, Grace JK. Fungi associated with the subterranean termite. Reticulitermes flavipes in Ontario. Mycologia 1990; 82: 289–294.

    Google Scholar 

  22. El-Halfawy NA, Aziz NH. Surface and internal distribution of moulds of some insects infesting different crop plants in Egypt. Egypt J Microbiol 1991; 26(2): 283–290.

    Google Scholar 

  23. Ismail MA, Abdel-Sater MA. Fungi associated with the Egyptian cotton leaf worm, Spodoptera littoralis Boisdoval Mycopathologia 1993; 124: 79–86.

    Google Scholar 

  24. Hernandezcrespo P, Antiagoalvarez C. Entomopathogenic fungi associated with natural populations of the Moroccan Locust Dociostaurus maroccanus and other Acaridoidea in Spain. Biocont Sci Technol 1997; 7(3): 357–363.

    Article  Google Scholar 

  25. Yamaoka Y, Wingfield MJ, Takahashi I, Soiheim H. Ophiostomatoid fungi associated with the spruce bark beetle Ips, Typographus f. aponicus in Japan. Mycol Res 1997; 101(part 10): 1215–1227.

    Article  Google Scholar 

  26. Maraun M, Visser S, Scheu S. Oriebatid mites enhance the recovery of the microbial community after a strong disturbance. Applied Soil Ecology 1998a; 9(1—3): 175–118.

    Article  Google Scholar 

  27. Maraun M, Migge S, Schaefer M, Scheu S. Selection of microfungal food by six oriebatid mite species (Oribatida acari) from two different beech forests. Pedobiologia 1998b; 42(3): 232–240.

    Google Scholar 

  28. Grant GA, Nelson DL, Befus-Nogel J, Bissett JD. Microorganisms associated with tracheal mite-infested honey bees. J Agr Res 1997; 36(3—4): 141–144.

    Google Scholar 

  29. Adebanjo A, Shopeju E. Sources and mycoflora associated with some sundried vegetables storage. Int Biodet & Biodegrad 1993; 31: 255–263.

    Article  Google Scholar 

  30. Guthrie WD, Lillehoj EB, Barry D, McMillian WW, Kwolek WF, Franz AO, Catalano FA, Russel WA, Widstrom NW. Aflatoxin contamination of preharvest corn: Interaction of European corn borer larvae and Aspergillus flavus-group isolates. J Econom Entomol 1982; 75: 265–269.

    Google Scholar 

  31. Fennell DI, Lilleboj EB, Kwolek WF, Guthrie WD, Sheeley R, Sparks AN, Widstom NW, Adams GL. Insect larval activity on developing corn ears and subsequent aflatoxin contamination of seed. J Econ Entomol 1978; 71: 624–628.

    CAS  Google Scholar 

  32. Lillehoj EB, McMillian WW, Widstrom NW, Guthrie WD, Jarvis JL, Barry D, Kwolek WF. Aflatoxin contamination of maize kernels before harvest: Interaction of Aspergillus flavus spores, corn earworm larvae and fungicide applications. Mycopathologia 1984; 86: 77–81.

    Article  PubMed  CAS  Google Scholar 

  33. Beal RH, Kais AG. Apparent infection of subterranean termites with Aspergillus flavus Link. J Insect Pathol 1962; 4: 488–489.

    Google Scholar 

  34. Gambino P, Thomas GM. Fungi associated with two Vespula (Hymenoptera: Vespidae) species in the eastern San Francisco Bay Area. Pan-Pacific Entomologist 1988; 64(2): 107–113.

    Google Scholar 

  35. Pao S, Brown GE. Reduction of microorganisms on citrus fruit surfaces during packinghouse processing. J Food Prot 1998; 61(7): 903–906.

    PubMed  CAS  Google Scholar 

  36. Bronswijk van JEMH, Sinha RN. Role of fungi in the survival of Dermatophagoides (Acarina: Pyroglyphidae) in house-dust environment. Environ Entomol 1973; 2: 142–145.

    Google Scholar 

  37. Maceod DM. Investigation on the genera Beauveria Vuill and Tritirachium Limber. Can J Botany 1954; 32: 818–891.

    Article  Google Scholar 

  38. Steinhaus EA. Principles of insect pathology. New York: McGraw Hall, 1949.

    Google Scholar 

  39. Leatherdale D. The arthropod hosts of entomogenous fungi in Britain. Entomophaga 1970; 15(4): 419–435.

    Article  Google Scholar 

  40. Ragunathan NH, Srinath D, Majunber K. Storage fungi associated with rice weevil. J Food Science Technol 1974; 11: 19.

    Google Scholar 

  41. Sinha RN, Harasymek L. Survival and reproduction of stored product mites and beetles on fungal and bacterial diets. Environ Entomol 1974; 3: 243–246.

    Google Scholar 

  42. Li-Sayed GN, Ignoffo CM, Leathers TD, Gupta SC. Insect cuticle and yeast extract effects on germination, growth, and production of hydrolytic enzymes of Nomuraea rileyi. Mycopathologia 1993; 122: 143–147.

    Article  Google Scholar 

  43. Bridge PD, Abraham YJ, Cornish MC, Prior C, Moore D. The chemotoxonomy of Beauveria bassiana (Deuteromycotina: Hyphomycetes) isolates from the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Mycopathologia 1990; 111: 85–90.

    Article  CAS  Google Scholar 

  44. Gupta SC, Leathers TD, El-Sayed GN, Ignoffo CM. Production of degradative enzymes by Metarrhizium anisopliae during growth on defined media and insect cuticle. Experimental Mycology 1991; 15: 310–315.

    Article  CAS  Google Scholar 

  45. Allan CR, Hadwiger LA. The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology 1979; 3: 285–287.

    Article  CAS  Google Scholar 

  46. Stossel P, Leuba JL. Effect of chitosan chitin and some aminosugars on growth of various soil borne phytopathogenic fungi. Phytopathol 1984, 111: 82–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Sater, M., Eraky, S. Bulbs mycoflora and their relation with three stored product mites. Mycopathologia 153, 33–39 (2002). https://doi.org/10.1023/A:1015263932149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015263932149

Navigation