Skip to main content
Log in

A Thermodynamic Property Model for Fluid-Phase Isobutane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A Helmholtz free energy equation of state for the fluid phase of isobutane (R-600a) has been developed on the basis of the ITS-90 temperature scale. This model was developed using selected measurements of the pressure–density–temperature (PρT), isobaric heat capacity, speed of sound, and saturation properties. The structure of the present model consists of only 19 terms in its functional form, which is the same as those successfully applied to our recent modeling of R-290 and R-600, and a nonlinear fitting procedure was used to determine the numerical parameters of the present equation of state. Based on a comparison with available experimental data, it is recognized that the model represents most of the reliable experimental data accurately in the range of validity covering temperatures from 113.56 K (the triple-point temperature) to 573 K, at pressures up to 35 MPa, and at densities up to 749 kg·m−3. Physically sound behavior of the derived thermodynamic properties over the entire fluid phase is demonstrated. The estimated uncertainties of properties calculated using the model are 0.2% in density, 1% in heat capacities, 0.02% in the speed of sound for the vapor, 1% in the speed of sound elsewhere, and 0.2% in vapor pressure, except in the critical region. In addition, graphical and statistical comparisons between experimental data and the available thermodynamic models, including the present one, showed that the model can provide a physically sound representation of all the thermodynamic properties of engineering importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Miyamoto and K. Watanabe, Int. J. Thermophys. 21:1045 (2000).

    Google Scholar 

  2. H. Miyamoto and K. Watanabe, Int. J. Thermophys. 22:459 (2001).

    Google Scholar 

  3. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  4. M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures (REFPROP), Version 6._01 (U.S. Deptartment of Commerce, Washington, DC, 1998).

    Google Scholar 

  5. M. B. Ewing and A. R. H. Goodwin, J. Chem. Thermodyn. 23:1107 (1991).

    Google Scholar 

  6. B. H. Sage and W. N. Lacey, Ind. Eng. Chem. 30:673 (1938).

    Google Scholar 

  7. B. H. Sage and W. N. Lacey, Monograph on API Research Project 37, American Petroleum Institute (1950), pp. 58–69.

  8. W. M. Morris, B. H. Sage, and W. N. Lacey, Tech. Publ. No. 1128, Petroleum Technology (1939).

  9. J. A. Beattie, S. Marple, Jr., and D. G. Edwards, J. Chem. Phys. 18:127 (1950).

    Google Scholar 

  10. M. H. Gonzalez and A. L. Lee, J. Chem. Eng. Data 11:357 (1966).

    Google Scholar 

  11. M. Waxman, H. A. Davis, J. M. H. Levelt Sengers, and M. Klein, Natl. Bur. Stand. (U.S.), Interagency Report NBSIR 79-1715 (1978).

  12. W. M. Haynes, J. Chem. Eng. Data 28:367 (1983).

    Google Scholar 

  13. B. H. Sage, D. C. Webster, and W. N. Lacey, Ind. Eng. Chem. 29:1309 (1937).

    Google Scholar 

  14. B. P. Dailey and W A. Felsing, J. Am. Chem. Soc. 65:44 (1943).

    Google Scholar 

  15. P. F. Wacker, R. K. Cheney, and R. B. Scott, J. Res. Natl. Bur. Stand. 38:651 (1947).

    Google Scholar 

  16. G. Ernst and J. Büsser, J. Chem. Thermodyn. 2:787 (1970).

    Google Scholar 

  17. J. G. Aston, R. M. Kennedy, and S. C. Schumann, J. Am. Chem. Soc. 62:2059 (1940).

    Google Scholar 

  18. E. R. Gilliland and H. W. Scheeline, Ind. Eng. Chem. 32:48 (1940).

    Google Scholar 

  19. R. C. Wackher, C. B. Linn, and A. V. Grosse, Ind. Eng. Chem. 37:464 (1945).

    Google Scholar 

  20. J. A. Beattie, D. G. Edwards, and S. Marple, Jr., J. Chem. Phys. 17:576 (1949).

    Google Scholar 

  21. A. W. Tickner and F. P. Lossing, J. Phys. Colloid Chem. 55:733 (1951).

    Google Scholar 

  22. J. F. Connolly, J. Phys. Chem. 66:1082 (1962).

    Google Scholar 

  23. H. Hipkin, AIChE J. 12:484 (1966).

    Google Scholar 

  24. M. Hirata and S. Suda, J. Jpn. Petrol. Inst. 9:885 (1966) [in Japanese].

    Google Scholar 

  25. M. Hirata, S. Suda, T. Hakuta, and K. Nagahama, Mem. Fac. Technol. Tokyo Metrop. Univ. 19:103 (1969).

    Google Scholar 

  26. G. J. Besserer and D. B. Robinson, J. Chem. Eng. Data 18:298 (1973).

    Google Scholar 

  27. L. C. Kahre, J. Chem. Eng. Data 18:267 (1973).

    Google Scholar 

  28. K. Steele, B. E. Poling, and D. B. Manley, J. Chem. Eng. Data 21:399 (1976).

    Google Scholar 

  29. J. A. Martinez-Ortiz and D. B. Manley, J. Chem. Eng. Data 23:165 (1978).

    Google Scholar 

  30. M. Waxman and J. S. Gallagher,J. Chem. Eng. Data 28:224 (1983).

    Google Scholar 

  31. L. A. Weber, Cryogenics 25:338 (1985).

    Google Scholar 

  32. L. A. Weber, J. Chem. Eng. Data 34:171 (1989).

    Google Scholar 

  33. L. A. Weber, J. Chem. Eng. Data 34:452 (1989).

    Google Scholar 

  34. A.-D. Leu and D. B. Robinson, J. Chem. Eng. Data 32:444 (1987).

    Google Scholar 

  35. A.-D. Leu and D. B. Robinson, J. Chem. Eng. Data 34:315 (1989).

    Google Scholar 

  36. Y. Higashi, M. Funakura, and Y. Yoshida, CFCs: The Day After, Proceedings of the Joint Meeting of IIR Commissions B1, B2, E1, and E2, Padova, Italy (1994), p. 493.

  37. J. S. Lim, J.-Y. Park, B.-G. Lee, Y.-W. Lee, and J.-D. Kim, J. Chem. Eng. Data 44:1226 (1999).

    Google Scholar 

  38. J. S. Lim, J.-Y. Park, B.-G. Lee, and J.-D. Kim, J. Chem. Eng. Data 45:734 (2000).

    Google Scholar 

  39. B.-G. Lee, J.-Y. Park, J. S. Lim, and Y.-W. Lee, J. Chem. Eng. Data 45:760 (2000).

    Google Scholar 

  40. P. Sliwinski, Z. Phys. Chem. Neue Folge 63:263 (1969).

    Google Scholar 

  41. R. W. Benoliel, Thesis (Pennsylvania State College, State College, 1941).

  42. J. B. Rodosevich and R. C. Miller, AIChE J. 19:729 (1973).

    Google Scholar 

  43. C. R. McClune, Cryogenics 16:289 (1976).

    Google Scholar 

  44. W. M. Haynes and M. J. Hiza, J. Chem. Thermodyn. 9:179 (1977).

    Google Scholar 

  45. J. E. Orrit and J. M. Laupretre, Adv. Cryog. Eng. 23:573 (1978).

    Google Scholar 

  46. R. Masui, W. M. Haynes, R. F. Chang, H. A. Davis, and J. M. H. Levelt Sengers, Rev. Sci. Instrum. 55:1132 (1984).

    Google Scholar 

  47. G. Kaminishi, C. Yokoyama, and S. Takahashi, Sekiyu Gakkaishi 31:433 (1988).

    Google Scholar 

  48. G. S. Parks, C. H. Shomate, W. D. Kennedy, and B. L. Crawford, Jr., J. Chem. Phys. 5:359 (1937).

    Google Scholar 

  49. R. D. Goodwin and W. M. Haynes, NBS Technical Note 1051 (U.S. Deptartment of Commerce, Washington, DC, 1982), p. 196.

  50. NGAA, Oil Gas J. 44:115 (1945).

    Google Scholar 

  51. R. Matteson, STM Special Tech. Publication No. 109 (1950).

  52. T. R. Das, C. O. Reed, and P. T. Eubank, J. Chem. Eng. Data 18:253 (1973).

    Google Scholar 

  53. J. M. H. Levelt Sengers, B. Kamgar-Parsi, and J. V. Sengers, J. Chem. Eng. Data 28:354 (1983).

    Google Scholar 

  54. K. Stephan and H. Hildwein, Recommended Data of Selected Compounds and Binary Mixtures (Chemistry Data Series) Dechema 4 (1987).

  55. H.-L. Zhang, Sharp Corp., Shinjo, Nara, Japan, private communication (1999).

  56. P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data 28:1713 (1999).

    Google Scholar 

  57. T. B. Coplen, J. Phys. Chem. Ref. Data 26:1239 (1997).

    Google Scholar 

  58. S. S. Chen, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 4:859 (1975).

    Google Scholar 

  59. M. Jaeschke and P. Schley, Int. J. Thermophys. 16:1381 (1995).

    Google Scholar 

  60. R. Span, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 1999).

  61. H.-L. Zhang, S. Tada, and K. Watanabe, Proc. 19th Jpn. Symp. Thermophys. Prop., Fukuoka, Japan (1998) [in Japanese], p. 311.

  62. T. O. Lüddecke and J. W. Magee, Int. J. Thermophys. 17:823 (1996).

    Google Scholar 

  63. L. A. Weber, Int. J. Refrig. 17:117 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Watanabe, K. A Thermodynamic Property Model for Fluid-Phase Isobutane. International Journal of Thermophysics 23, 477–499 (2002). https://doi.org/10.1023/A:1015161519954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015161519954

Navigation