Skip to main content
Log in

Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The composition, abundance and apparent molecular masses of chlorosome polypeptides from Chlorobium tepidum and Chlorobium vibrioforme 8327 were compared. The most abundant, low-molecular-mass chlorosome polypeptides of both strains had similar electrophoretic mobilities and abundances, but several of the larger proteins were different in both apparent mass and abundance. Polyclonal antisera raised against recombinant chlorosome proteins of Cb. tepidum recognized the homologous proteins in Cb. vibrioforme, and a one-to-one correspondence between the chlorosome proteins of the two species was confirmed. As previously shown [Ormerod et al. (1990) J Bacteriol 172: 1352–1360], acetylene strongly suppressed the synthesis of bacteriochlorophyll c in Cb. vibrioforme strain 8327. No correlation was found between the bacteriochlorophyll c content of cells and the cellular content of chlorosome proteins. Nine of ten chlorosome proteins were detected in acetylene-treated cultures, and the chlorosome proteins were generally present in similar amounts in control and acetylene-treated cells. These results suggest that the synthesis of chlorosome proteins and the assembly of the chlorosome envelope is constitutive. It remains possible that the synthesis of bacteriochlorophyll c and its insertion into chlorosomes might be regulated by environmental parameters such as light intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blankenship RE, Olson J and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Blum H, Beier H and Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99

    Article  Google Scholar 

  • Bobe FW, Pfennig N, Swanson KL and Smith KM (1990) Red shift of absorption maxima in chlorobiaceae through enzymic methylation of their antenna bacteriochlorophylls. Biochemistry 29: 4340–4348

    Article  PubMed  Google Scholar 

  • Borrego CM and Garcia-Gil LJ (1995) Rearrangement of light-harvesting bacteriochlorophyll homologs as a response of green sulfur bacteria to low-light intensities. Photosynth Res 45: 21–30

    Article  Google Scholar 

  • Borrego CM, Gerola PD, Miller M and Cox RP (1999) Light intensity effects on pigment composition and organization in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59: 159–166

    Article  Google Scholar 

  • Broch-Due M, Ormerod JG and Fjerdingen BS (1978) Effect of light intensity on vesicle formation in Chlorobium. Arch Microbiol 116: 269–74

    Article  PubMed  Google Scholar 

  • Chung S and Bryant DA (1996a) Characterization of csmB genes, encoding a 7.5-kDa protein of the chlorosome envelope, from the green sulfur bacteria Chlorobium vibrioforme 8327D and Chlorobium tepidum. Arch Microbiol 166: 234–244

    Article  PubMed  Google Scholar 

  • Chung S and Bryant DA (1996b) Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynth Res 50: 41–59

    Article  Google Scholar 

  • Chung S, Frank G, Zuber H and Bryant DA (1994) Genes encoding two chlorosome proteins from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynth Res 41: 261–275

    Article  Google Scholar 

  • Chung S, Shen G, Ormerod JG and Bryant DA (1998) Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacteria Chlorobium vibrioforme 8327: The chlorosome protein CsmA is required for viability but CsmC is dispensable. FEMS Microbiol Lett 164: 353–361

    Article  PubMed  Google Scholar 

  • Feick RG and Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23: 3693–3700

    Article  Google Scholar 

  • Feick RG, Fitzpatrick M and Fuller RC (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. J Bacteriol 150: 905–915

    PubMed  Google Scholar 

  • Feick R, Shiozawa JA and Ertlmaier A (1995) Biochemical and spectroscopic properties of the reaction center of the green filamentous bacterium, Chloroflexus aurantiacus. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 699–708. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Foidl M, Golecki JR and Oelze J (1994) Bacteriochlorophyll c formation and chlorosome development in Chloroflexus aurantiacus Photosynth Res 41: 145–150

    Article  Google Scholar 

  • Foidl M, Golecki JR and Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus Photosynth Res 55: 109–114

    Article  Google Scholar 

  • Fuhrmann S, Overmann J, Pfenning N and Fischer U (1993) Influence of vitamin B12 and light on the formation of chlorosomes in green-and brown-colored Chlorobium species. Arch Microbiol 160: 193–198

    Google Scholar 

  • Gerola PD, Højrup P, Knudsen J, Roepstroff P and Olson JM (1988) The bacteriochlorophyll c-binding protein from chlorosomes of Chlorobium limicola f. thiosulfatophilum. In: Olson JM, Ormerod JG, Amesz J, Stakebrandt E and Truper HG (eds) Green Photosynthetic Bacteria, pp 43–52. Plenum, New York

    Google Scholar 

  • Gerola PD and Olson JM (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76

    PubMed  Google Scholar 

  • Golecki JR and Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus Arch Microbiol 148: 236–241

    Article  Google Scholar 

  • Guyoneaud R, Martinez-Planells A, Buitenhuis ET, Borrego CM and Garcia-Gil LJ (1998) Light-dependent morphological and physiological changes in Prostheocochloris aestuarii In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 177–180. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Højrup P, Gerola PD, Hansen HF, Mikkelsen JM, Shahed AE, Knudsen J, Roepstroff P and Olson JM (1991) The amino acid sequence of a major protein component in the light harvesting complex of the green photosynthetic bacteria Chlorobium limicola f. thiosulfatophilum. Biochim Biophys Acta 1077: 220–224

    PubMed  Google Scholar 

  • Holo H, Broch-Due M and Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143: 94–99

    Article  Google Scholar 

  • Holt SC, Conti SF and Fuller RC (1966a) Photosynthetic apparatus in the green bacterium Chloropseudomonas ethylicum. J Bacteriol 91: 311–323

    Article  Google Scholar 

  • Holt SC, Conti SF and Fuller RC (1966b) Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum. J Bacteriol 91: 349–355

    PubMed  Google Scholar 

  • Lehmann RP, Brunisholz RA and Zuber H (1994) Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChlc c-binding function of the 5.7 kDa polypeptide. FEBS Lett 342: 319–24

    Article  PubMed  Google Scholar 

  • Niedermeyer G, Shiozawa JA, Lottspeich F and Feick RG (1994) The primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342: 61–65

    Article  PubMed  Google Scholar 

  • Oelze J and Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development In: Blankenshop RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 259–278. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67: 61–75

    Article  Google Scholar 

  • Ormerod JG, Nesbakken T and Beale SI (1990) Specific inhibition of antenna bacteriochlorophyll synthesis in Chlorobium vibrioforme by anesthetic gases. J Bacteriol 172: 1352–1360

    PubMed  Google Scholar 

  • Schägger H and van Jagow G (1987) Tricine-sodium dodecylsulfate polyacrylamide gel electrophoresis of the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379

    Article  PubMed  Google Scholar 

  • Schmidt K, Maarzahl M and Mayer F (1980) Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl. Arch Microbiol 127: 87–97

    Article  Google Scholar 

  • Sprague SG, Staehelin LA and Fuller RC (1981a) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1032–1039

    PubMed  Google Scholar 

  • Sprague SG, Staehelin LA, DiBartolomeis MJ and Fuller RC (1981b) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031

    PubMed  Google Scholar 

  • Stanier RY and Smith JHC (1960) The chlorophylls of green bacteria. Biochim Biophys Acta 41: 478–484

    Article  PubMed  Google Scholar 

  • Stolz JF, Fuller RC and Redlinger TE (1990) Pigment-protein diversity in chlorosomes of green phototrophic bacteria. Arch Microbiol 154: 422–427

    Article  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ and Dubendorff JW (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Meth Enzymol 185: 60–89

    PubMed  Google Scholar 

  • Theroux SJ, Redlinger TE, Fuller RC and Robinson SJ (1990) Gene encoding the 5.7-kilodalton chlorosome protein of Chloroflexus aurantiacus: regulated message levels and a predicted carboxyl-terminal protein extension. J Bacteriol 172: 4497–4504

    PubMed  Google Scholar 

  • Vassilieva EV and Bryant DA (1998) Selective extraction of proteins from Chlorobium tepidum chlorosomes. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 105–108. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Vassilieva EV, Frigaard N-U and Bryant DA (2000) Chlorosomes: the light-harvesting complexes of the green bacteria. The Spectrum 13: 7–13

    Google Scholar 

  • Vassilieva EV, Antonkine ML, Zybailov BL Yang F, Jakobs C, Golbeck JH and Bryant DA (2001) Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. Biochemistry 40: 464–473

    Article  PubMed  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard N-U, Baker MA, Sotak AM and Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry (in press)

  • Wagner-Huber R, Fischer U, Brunisholz R, Rumbeli M, Frank G and Zuber H (1990) The primary structure of the presumable BChld-binding polypeptide of Chlorobium vibrioforme f. thiosulfatorium. Z Naturforsch 45c: 818–822

    Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90

    Article  Google Scholar 

  • Wechsler TD, Brunisholz RA, Suter F, Fuller RC and Zuber H (1985) The complete amino acid sequence of a bacteriochlorophyll a-binding polypeptide isolated from the cytoplasmic membrane of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 191: 34–38

    Article  Google Scholar 

  • Wechsler TD, Brunisholz RA, Frank G, Suter F and Zuber H (1987) The complete amino acid sequence of the antenna polypeptide B806–866 β from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett 210: 189–194

    Article  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilieva, E.V., Ormerod, J.G. & Bryant, D.A. Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme . Photosynthesis Research 71, 69–81 (2002). https://doi.org/10.1023/A:1014903630687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014903630687

Navigation