Skip to main content
Log in

Oxidative Modification of Proteins: Oxidation of Tryptophan and Production of Dityrosine in Purified Proteins Using Fenton's System

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Specific features of metal-catalyzed oxidation (MCO) of purified proteins (human serum albumin and human erythrocyte superoxide dismutase) were analyzed by the oxidation level of tryptophan and tyrosine. The production of dityrosine cross-links and the oxidation of tryptophan residues were recorded by fluorescence. The degree of oxidative modification of the amino acid residues of the proteins depended on the concentration of the Fenton's medium components and on the incubation time. These changes were different in different proteins. By electrophoresis and gel-permeation chromatography, changes in the superoxide dismutase structure are shown to be caused by oxidative modification of the enzyme and to be accompanied by a decrease in its activity. Findings with OH. scavengers (mannitol and ethanol) suggest that oxidative modification of the proteins in Fenton's medium should be associated not only with hydroxyl radical but also with ferryl and perferryl ions and with the radical PH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Davies, K. J. A., Delsignore, M. E., and Lin, S. W. (1987) J. Biol. Chem., 262, 9902-9907.

    PubMed  Google Scholar 

  2. Halliwell, B. (1992) in Free Radicals in Brain Aging, Neurological and Mental Disorders (Packer, L., Prilipko, L., and Christen,Y., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 21-40.

    Google Scholar 

  3. Bongarzone, E. R., Pasquini, J. M., and Soto, E. F. (1995) J. Neurosci. Res., 41, 213-221.

    PubMed  Google Scholar 

  4. Crune, T., Michel, P., Sitte, N., Eggert, W., Albrecht-Nebe, H., Esterbauer, H., and Siems, W. G. (1997) Free Rad. Biol. Med., 23, 357-360.

    PubMed  Google Scholar 

  5. Ciolino, H. P., and Levine, R. L. (1997) Free Rad. Biol. Med., 22, 1277-1282.

    PubMed  Google Scholar 

  6. Dubinina, E. E. (1998) in Fundamental and Applied Aspects of Modern Biochemistry (Shcherbak, I. G., ed.) [in Russian], Vol. 2, St. Petersburg State Medical University Publishers, St. Petersburg, pp. 386-397.

    Google Scholar 

  7. Zaidi, A., and Michaels, M. L. (1999) Free Rad. Biol. Med., 27, 810-821.

    PubMed  Google Scholar 

  8. Stadtman, E. R. (1990) Biochemistry, 29, 6323-6331.

    PubMed  Google Scholar 

  9. Stadtman, E. R. (1993) Ann. Rev. Biochem., 62, 797-821.

    PubMed  Google Scholar 

  10. Stadtman, E. R. (1995) Meth. Enzymol., 258, 379-393.

    PubMed  Google Scholar 

  11. Berlett, B. S., and Stadtman, E. R. (1997) J. Biol. Chem., 272, 20313-20316.

    Article  PubMed  Google Scholar 

  12. Fenton, H. J. J. (1894) J. Chem. Soc. London, 65, 899.

    Google Scholar 

  13. Davies, K. J. A., and Delsignore, M. E. (1987) J. Biol. Chem., 262, 9908-9913.

    PubMed  Google Scholar 

  14. Stadtman, E. R., and Oliver, C. N. (1991) J. Biol. Chem., 266, 2005-2008.

    PubMed  Google Scholar 

  15. Stadtman, E. R. (1990) Free Rad. Biol. Med., 9, 315-325.

    PubMed  Google Scholar 

  16. Walling, C. (1975) Acc. Chem. Res., 8, 125-131.

    Google Scholar 

  17. Koppenol, W. H., and Liebman, J. F. (1984) J. Phys. Chem., 88, 99-105.

    Google Scholar 

  18. Rush, J. D., and Koppenol, W. H. (1986) J. Biol. Chem., 261, 6730-6733.

    PubMed  Google Scholar 

  19. Von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor and Francis, London.

    Google Scholar 

  20. Halliwel, B., and Gutteridge, J. M. C. (1990) Meth. Enzymol., 186, 1-85.

    Google Scholar 

  21. Qian, S. Y., and Buettner, G. R. (1999) Free Rad. Biol. Med., 26, 1447-1456.

    PubMed  Google Scholar 

  22. Saprin, A. N., and Kalinina, E. V. (1999) Usp. Biol. Khim., 39, 289-326.

    Google Scholar 

  23. Bielski, B. H. J. (1990) Meth. Enzymol., 186, 108-113.

    PubMed  Google Scholar 

  24. Laemmli, U. K. (1970) Nature, 227, 680-685.

    PubMed  Google Scholar 

  25. Kostyuk, V. A., Potapovich, A. I., and Kovaleva, Zh. V. (1990) Vopr. Med. Khim., 36, 88-91.

    Google Scholar 

  26. Beutler, E. (1975) in Red Cell Metabolism, Grune and Stratton, N. Y.-San-Francisco-London, pp. 89-90.

    Google Scholar 

  27. Yin, D., Lingnert, H., Ekstrond, B., and Brunk, U. T. (1992) Free Rad. Biol. Med., 13, 543-556.

    PubMed  Google Scholar 

  28. Nappi, A. J., and Vass, E. (1998) Biochim. Biophys. Acta, 1425, 159-167.

    PubMed  Google Scholar 

  29. Ushisima, Y., Nakano, M., and Goto, T. (1984) Biochem. Biophys. Res. Commun., 125, 916-918.

    PubMed  Google Scholar 

  30. Huggins, T. G., Wells-Knecht, M. C., Detorie, N. A., Baynes, J. W., and Thorhe, S. R. (1993) J. Biol. Chem., 268, 12341-12347.

    PubMed  Google Scholar 

  31. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. (1988) J. Phys. Chem. Ref. Data, 17, 513-886.

    Google Scholar 

  32. Gutteridge, J. M. S., and Wilkins, S. (1983) Biochim. Biophys. Acta, 759, 38-41.

    PubMed  Google Scholar 

  33. Michelson, A. M., and Maral, J. (1983) Biochimie (Paris), 65, 95-104.

    PubMed  Google Scholar 

  34. Chen, S. N., and Hoffman, M. Z. (1973) Radiat. Res., 56, 40-47.

    PubMed  Google Scholar 

  35. Goss, S. P. A., Singh, R. J., and Kalyanaraman, B. (1999) J. Biol. Chem., 274, 28233-28239.

    PubMed  Google Scholar 

  36. Hodgson, E. K., and Fridovich, I. (1975) Biochemistry, 14, 5299-5303.

    PubMed  Google Scholar 

  37. Hodgson, E. K., and Fridovich, I. (1975) Biochemistry, 14, 5294-5298.

    PubMed  Google Scholar 

  38. Uchida, K., and Kawakishi, S. (1994) J. Biol. Chem., 269, 2405-2410.

    PubMed  Google Scholar 

  39. Kim, Y. S., and Han, S. (2000) FEBS Lett., 479, 25-28.

    PubMed  Google Scholar 

  40. Singh, R. J., Goss, S. P. A., Joseph, J., and Kalyanaraman, B. (1998) Proc. Natl. Acad. Sci. USA, 95, 12912-12917.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Dubinina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinina, E.E., Gavrovskaya, S.V., Kuzmich, E.V. et al. Oxidative Modification of Proteins: Oxidation of Tryptophan and Production of Dityrosine in Purified Proteins Using Fenton's System. Biochemistry (Moscow) 67, 343–350 (2002). https://doi.org/10.1023/A:1014840617890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014840617890

Navigation