Skip to main content
Log in

Inductively coupled plasma atomic emission spectrometric determination of lanthanides and Y in various uranium hydrometallurgical products

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An ICP-AES method for the analysis of trace amounts of lanthanides and yttrium in sodium or magnesium diuranate samples (yellow cake) and other beneficiation product generated during the uranium extraction process (hydrometallurgy) from its ores is described. Most of the matrix elements are removed by an initial oxalate precipitation of lanthanides using calcium as carrier. A solvent extraction procedure using a mixture of mono 2-ethylhexyl dihydrogen phosphate (H2MEHP) and bis (2-ethylhexyl) hydrogen phosphate (HDEHP) is used for the removal of calcium, iron and the occluded uranium. A combination of oxalate precipitation and solvent extraction procedure is applied for the selective separation and preconcentration of traces of lanthanides from yellow cake and iron cake samples. The solvent extraction procedure is directly applied for the separation of lanthanides from the uranium leach liquor and lime cake. The accuracy of the method is checked by analyzing synthetic mixture containing known amounts of traces of lanthanides and also by comparing with another standard separation procedure like ion exchange method, and the recovery was better than 95%. The method is rapid, simple, accurate and suitable for the separation of lanthanides from uranium, iron and calcium rich materials. The precision of the method is characterized by an RSD of 2 to 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. HENDERSON (Ed.), Rare Earth Element Geochemistry, Elsevier, Amsterdam, 1984, p. 115.

    Google Scholar 

  2. J. J. BECKER, Sci. Am., 223 (1970) 92.

    Google Scholar 

  3. R. K. MALHOTRA, Proc. 10th ISAS National Symp. on Strategic and Hi-Tech Metals, Udaipur, India, 1994, IL. 15, p. 1.

  4. J. W. DANA, S. DANA, The System of Minerology, Vol. II, 7th ed., John Wiley and Sons Inc., New York, 1951.

    Google Scholar 

  5. R. C. MERRIT, The Extractive Metallurgy of Uranium, Johnson Publishing Co., Bauldo, 1971, p. 59.

    Google Scholar 

  6. Uranium Extraction Technology, Technical Report Series, No. 359, Vienna, 1993.

  7. B. H. LUCAS, G. M. RITCEY, CIM Bull., 68 (1975) 124.

    Google Scholar 

  8. W. OOGHE, F. VERBEEK, Anal. Chim. Acta, 73 (1974) 87.

    Google Scholar 

  9. J. G. SEN GUPTA, Talanta, 28 (1981) 31.

    Google Scholar 

  10. J. G. SEN GUPTA, Talanta, 32 (1985) 1.

    Google Scholar 

  11. F. HABASHI, M. ZAILAF, F. T. AWADALLE, Fresenins Z. Anal. Chem., 325 (1986) 479.

    Google Scholar 

  12. J. G. CROCK, F. E. LICHTE, Anal. Chem., 54 (1982) 1329.

    Google Scholar 

  13. J. G. CROCK, F. E. LICHTE, G. O. RIDDLE, C. L. BEACH, Talanta, 33 (1986) 601.

    Google Scholar 

  14. P. J. WATKINS, J. NOLAN, Chem. Geol., 95 (1992) 131.

    Google Scholar 

  15. J. N. WALSH, F. BUCKLEY, J. BARKER, Chem. Geol., 33 (1981) 141.

    Google Scholar 

  16. M. I. RUCANDIO, Fresenius J. Anal. Chem., 357 (1977) 661.

    Google Scholar 

  17. N. LIHAREVA, M. DELALOYE, Fresenius J. Anal. Chem., 357 (1997) 314.

    Google Scholar 

  18. J. G. CROCK, F. E. LICHTE, T. R. WILDEMAN, Chem. Geol., 45 (1984) 149.

    Google Scholar 

  19. L. A. HASKIN, T. R. WILDEMAN, M. A. HASKIN, J. Radiat. Chem., 1 (1968) 337.

    Google Scholar 

  20. H. ELDERFIELD, M. J. GREAVES, Nature, 296 (1982) 214.

    Google Scholar 

  21. M. F. THIRLWALL, Chem. Geol., 35 (1982) 155.

    Google Scholar 

  22. K. SHINOTSUKA, M. EBIHARA, Anal. Chim. Acta, 338 (1997) 237.

    Google Scholar 

  23. K. SHINOTSUKA, H. HISAKA, M. EBIHARA, H. NAKAHARA, Anal. Sci., 12 (1996) 917.

    Google Scholar 

  24. V. BALARAM, Trends Anal. Chem., 15 (1996) 475.

    Google Scholar 

  25. A. B. SHABANI, T. AKAGI, H. SHIMIZU, A. MASUDA, Anal. Chem., 62 (1990) 2709.

    Google Scholar 

  26. G. L. MOORE, Introduction to Inductively Coupled Plasma Atomic Emission Spectrometry, Elsevier, Amsterdam, 1989, p. 8.

    Google Scholar 

  27. P. J. POTTS, A Handbook of Silicate Rock Analysis, Blackie, London, 1987, p. 169.

    Google Scholar 

  28. S. AHAMAD, M. S. CHOUDHARY, I. H. QURESHI, J. Radioanal. Nucl. Chem., 83 (1984) 201.

    Google Scholar 

  29. M. GOPAL KRISHNAN, K. RADHAKRISHNAN, P. S. DHAMI, V. T. KULKARNI, M. V. JOSHI, A. B. PATWARDHAN, A. RAMANUJAM, J. N. MATHUR, Talanta, 44 (1997) 169.

    Google Scholar 

  30. S. S. BISWAS, P. S. MURTHY, A. SETHUMADHAVAN, R. KAIMAL, A. V. SANKARAN, Anal. Lett., 24 (1991) 887.

    Google Scholar 

  31. P. K. SRIVASTAVA, A. PREMADAS, J. Anal. At. Spectrom., 14 (1999) 1087.

    Google Scholar 

  32. M. DASKALOVA, I. V. BOEVSKI, Spectrochim. Acta, 54B (1999) 1099.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premadas, A., Srivastava, P.K. Inductively coupled plasma atomic emission spectrometric determination of lanthanides and Y in various uranium hydrometallurgical products. Journal of Radioanalytical and Nuclear Chemistry 251, 233–239 (2002). https://doi.org/10.1023/A:1014804007992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014804007992

Keywords

Navigation