Skip to main content
Log in

A Three-Dimensional Backward Lagrangian Footprint Model For A Wide Range Of Boundary-Layer Stratifications

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present a three-dimensional Lagrangian footprint model with the ability to predict the area of influence (footprint) of a measurement within a wide range of boundary-layer stratifications and receptor heights. The model approach uses stochastic backward trajectories of particles and satisfies the well-mixed condition in inhomogeneous turbulence for continuous transitions from stable to convective stratification. We introduce a spin-up procedure of the model and a statistical treatment of particle touchdowns which leads to a significant reduction of CPU time compared to conventional footprint modelling approaches. A comparison with other footprint models (of the analytical and Lagrangian type) suggests that the present backward Lagrangian model provides valid footprint predictions under any stratification and, moreover, for applications that reach across different similarity scaling domains (e.g., surface layer to mixed layer, for use in connection with aircraft measurements or with observations on high towers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baerentsen, J. H. and Berkowicz, R.: 1984, 'Monte Carlo Simulation of Plume Dispersion in the Convective Boundary Layer', Atmos. Environ. 18, 701-712.

    Google Scholar 

  • de Haan, P.: 1999, 'On the Use of Density Kernels for Concentration Estimations within Particle and Puff Dispersion Models', Atmos. Environ. 33, 2007-2021.

    Google Scholar 

  • de Haan, P. and Rotach, M. W.: 1998, 'A Novel Approach to Atmospheric Dispersion Modelling: The Puff-Particle Model (PPM)', Quart. J. Roy. Meteorol. Soc. 124, 2771-2792.

    Google Scholar 

  • Du, S.: 1995, 'Estimation of the Kolmogorov Constant C0) for the Lagrangian Structure Function, Using a Second-Order Lagrangian Model of Grid Turbulence', Phys. Fluids 7, 3083-3090.

    Google Scholar 

  • Du, S.: 1997, 'Universality of the Lagrangian Velocity Structure Function Constant (C 0) across Different Kinds of Turbulence', Boundary-Layer Meteorol. 83, 207-219.

    Google Scholar 

  • Finn, D., Lamb, B., Leclerc, M. Y., and Horst, T. W.: 1996, 'Experimental Evaluation of Analytical and Lagrangian Surface-Layer Flux Footprint Models', Boundary-Layer Meteorol. 80, 283-308.

    Google Scholar 

  • Flesch, T. K.: 1996, 'The Footprint for Flux Measurements, from Backward Lagrangian Stochastic Models', Boundary-Layer Meteorol. 78, 399-404.

    Google Scholar 

  • Flesch, T. K., Wilson, J. E., and Yee, E.: 1995, 'Backward-Time Langrangian Stochastic Dispersion Models and their Application to Estimate Gaseous Emissions', J. Appl.Meteorol. 34, 1320-1332.

    Google Scholar 

  • Forrer, J. and Rotach, M. W.: 1997, 'On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet', Boundary-Layer Meteorol. 85, 111-136.

    Google Scholar 

  • Gryning, S.-E. 1999, 'Some Aspects of Atmospheric Dispersion in the Stratified Atmospheric Boundary Layer over Homogeneous Terrain', Boundary-Layer Meteorol. 90, 479-494.

    Google Scholar 

  • Gryning, S.-E., Holtslag, A. A. M., Irwin, J. S., and Sivertsen, B.: 1987, 'Applied Dispersion Modelling Based on Meteorological Scaling Parameters', Atmos. Environ. 21, 79-89.

    Google Scholar 

  • Horst, T.W.: 1999, 'The Footprint for Estimation of Atmosphere-Surface Exchange Fluxes by Profile Techniques', Boundary-Layer Meteorol. 90, 171-188.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1992, 'Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 90, 171-188.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1994, 'How Far Is Far Enough?: The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes', J. Atmos. Ocean. Tech. 11, 1018-1025.

    Google Scholar 

  • Kljun, N., Rotach, M.W., and Schmid, H. P.: 1999, 'Allocation of Surface Sources Using "Backward Trajectory"-Simulations', in preprint, 13th Symposium on Boundary Layers and Turbulence, Dallas, TX, American Meteorological Society, Boston, MA, pp. 187-188.

    Google Scholar 

  • Kljun, N., de Haan, P., Rotach, M. W., and Schmid, H. P.: 2000a, 'Footprint Determination in Stable to Convective Stratification Using an Inverse 3D Lagrangian Particle Model', in preprint, 24th Conference on Agricultural and Forest Meteorology, Davis, CA, American Meteorological Society, Boston, MA, pp. 156-157.

    Google Scholar 

  • Kljun, N., Rotach, M. W., and Schmid, H. P.: 2000b, 'A Lagrangian Footprint Model for Stratifications Ranging from Stable to Convective', in preprint, 14th Symposium on Boundary Layers and Turbulence, Aspen, CO, American Meteorological Society, Boston, MA, pp. 130-132.

    Google Scholar 

  • Leclerc, M. Y. and Thurtell, G. W.: 1990, 'Footprint Prediction of Scalar Fluxes Using a Markovian Analysis', Boundary-Layer Meteorol. 52, 247-258.

    Google Scholar 

  • Leclerc, M. Y., Shen, S., and Lamb, B.: 1997, 'Observations and Large-Eddy Simulation Modeling of Footprints in the Lower Convective Boundary Layer', J. Geophys. Res. 102, 9323-9334.

    Google Scholar 

  • Luhar, A. K. and Rao, K. S.: 1994, 'Source Footprint Analysis for Scalar Fluxes Measured in Flows over an Inhomogeneous Surface', Air Pollut. Model. Appl. X, 315-322.

    Google Scholar 

  • Mason, P. J.: 1992, 'Large-Eddy Simulation of Dispersion in Convective Boundary Layers withWind Shear', Atmos. Environ. 26A, 1561-1571.

    Google Scholar 

  • Physick, W. L., Noonan, J. A., McGregor, J. L., Abbs, D. J., and Manins, P. C.: 1994, LADM: A Lagrangian Atmospheric Dispersion Model, Technical Report 24, CSIRO Division of Atmospheric Research, Australia, 137 pp.

    Google Scholar 

  • Rannik, U., Aubinet, M., Kurbanmuradov, O., Sabelfeld, K. K., Markkanen, T., and Vesala, T.: 2000, 'Footprint Analysis for Measurements over a Heterogeneous Forest', Boundary-Layer Meteorol. 97, 137-166.

    Google Scholar 

  • Rotach, M. W., Gryning, S.-E., and Tassone, C.: 1996, 'A Two-Dimensional Lagrangian Stochastic Dispersion Model for Daytime Conditions', Quart. J. Roy. Meteorol. Soc. 122, 367-389.

    Google Scholar 

  • Schmid, H. P.: 1994, 'Source Areas for Scalars and Scalar Fluxes', Boundary-Layer Meteorol. 67, 293-318.

    Google Scholar 

  • Schmid, H. P.: 1997, 'Experimental Design for FluxMeasurements: Matching Scales of Observations and Fluxes', Agric. For. Meteorol. 87, 179-200.

    Google Scholar 

  • Schmid, H. P.: 2002, 'Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective', Agric. For. Meteorol. (Special Issue on FLUXNET), in press.

  • Schmid, H. P. and Oke, T. R.: 1990, 'A Model to Estimate the Source Area Contributing to Turbulent Exchange in the Surface Layer over Patchy Terrain', Quart. J. Roy. Meteorol. Soc. 16, 965-988.

    Google Scholar 

  • Schuepp, P. H., Leclerc, M. Y., Macpherson, J. I., and Desjardins, R. L.: 1990, 'Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation', Boundary-Layer Meteorol. 50, 355-373.

    Google Scholar 

  • Shaw, R. H., Tavangar, J., and David, P. W.: 1983, 'Structure of the Reynolds Stress in a Canopy Layer', J. Clim. Appl. Meteorol. 22, 1922-1931.

    Google Scholar 

  • Thomson, D. J.: 1987, 'Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows', J. Fluid Mech. 180, 529-556.

    Google Scholar 

  • Van Ulden, A. P.: 1978, 'Simple Estimates for Vertical Diffusion from Sources near the Ground', Atmos. Environ. 12, 2125-2129.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1976, 'A Laboratory Model of Diffusion into the Convective Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 102, 427-445.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1978, 'A Laboratory Study of Dispersion from an Elevated Source within a Modelled Convective Planetary Boundary Layer', Atmos. Environ. 12, 1305-1311.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1981, 'A Laboratory Study of Dispersion from a Source in the Middle of the Convective Layer', Atmos. Environ. 15, 109-117.

    Google Scholar 

  • Wilson, J. D. and Swaters, G. E.: 1991, 'The Source Area Influencing aMeasurement in the Planetary Boundary Layer: The "Footprint" and the "Distribution of Contact Distance"', Boundary-Layer Meteorol. 55, 25-46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kljun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kljun, N., Rotach, M. & Schmid, H. A Three-Dimensional Backward Lagrangian Footprint Model For A Wide Range Of Boundary-Layer Stratifications. Boundary-Layer Meteorology 103, 205–226 (2002). https://doi.org/10.1023/A:1014556300021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014556300021

Navigation