Skip to main content
Log in

The Orientational Relaxation of Bipolar Active Regions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In the mean, bipolar active regions are oriented nearly toroidally, according to Hale's polarity law, with a latitude-dependent tilt known as Joy's Law. The tilt angles of individual active regions deviate from this mean behavior and change over time. It has been found that on average the change is toward the mean angle at a rate characteristic of 4.37 days (Howard, 1996). We show that this orientational relaxation is consistent with the standard model of flux tube emergence from a deep dynamo layer. Under this scenario Joy's law results from the Coriolis effect on the rising flux tube (D'Silva and Choudhuri, 1993), and departures from it result from turbulent buffeting of the tubes (Longcope and Fisher, 1996). We show that relaxation toward Joy's angle occurs because the turbulent perturbations relax on shorter time scales than the perturbations from the Coriolis force. The turbulent perturbations relax more rapidly because they are localized to the topmost portion of the convection zone while the Coriolis perturbations are more widely distributed. If a fully-developed active region remains connected to the strong toroidal magnetic field at the base of the convection zone, its tilt will eventually disappear, leaving it aligned perfectly toroidally. On the other hand, if the flux becomes disconnected from the toroidal field the bipole will assume a tilt indicative of the location of disconnection. We compare models which are connected and disconnected from the toroidal field. Only those disconnected at points very deep in the convection zone are consistent with observed time scale of orientational relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achterberg, A.: 1996, Astron. Astrophys. 313, 1008.

    Google Scholar 

  • Caligari, P., Moreno-Insertis, F., and Schüssler, M.: 1995, Astrophys. J. 441, 886.

    Google Scholar 

  • Choudhuri, A. R.: 1989, Solar Phys. 123, 217.

    Google Scholar 

  • Choudhuri, A. R. and Dikpati, M.: 1999, Solar Phys. 184, 61

    Google Scholar 

  • Choudhuri, A. R. and Gilman, P. A.: 1987, Astrophys. J. 316, 788.

    Google Scholar 

  • Choudhuri, A. R., Schüssler, M., and Dikpati, M.: 1995, Astron. Astrophys. 303, L29.

    Google Scholar 

  • Dikpati, M. and Charbonneau, P.: 1999, Astrophys. J. 518, 508.

    Google Scholar 

  • D'Silva, S. and Choudhuri, A. R.: 1993, Astron. Astrophys. 272, 621.

    Google Scholar 

  • D'Silva, S. and Howard, R. F.: 1993, Solar Phys. 148, 1.

    Google Scholar 

  • Durney, B. R.: 1995, Solar Phys. 160, 213.

    Google Scholar 

  • Durney, B. R.: 1997, Astrophys. J. 486, 1065.

    Google Scholar 

  • Fan, Y., Fisher, G. H., and DeLuca, E. E.: 1993, Astrophys. J. 405, 390.

    Google Scholar 

  • Fan, Y., Fisher, G. H., and McClymont, A. N.: 1994, Astrophys. J. 436, 907.

    Google Scholar 

  • Hale, G. E., Ellerman, F., Nicholson, S. B., and Joy, A. H: 1919, Astrophys. J. 49, 153.

    Google Scholar 

  • Howard, R. F.: 1992, Solar Phys. 137, 205.

    Google Scholar 

  • Howard, R. F.: 1996, Solar Phys. 169, 293.

    Google Scholar 

  • Howard, R. F., Gilman, P. A., and Gilman, P. I.: 1984. Astrophys. J. 283, 373.

    Google Scholar 

  • Longcope, D. W. and Fisher, G. H.: 1996, Astrophys. J. 458, 380.

    Google Scholar 

  • Lundquist, L. L. and Fisher, G. H.: 2001, AGU, Sping Meeting 2001.

  • Moreno-Insertis, F., Schuessler, M., and Ferriz-Mas, A.: 1996, Astron. Astrophys. 312, 317.

    Google Scholar 

  • Nandy, D. and Choudhuri, A. R.: 2001, Astrophys. J. 551, 576.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ryutov, D. A. and Ryutova, M. P.: 1976, Soviet Phys. JETP 43, 491.

    Google Scholar 

  • Spruit, H. C.: 1974, Solar Phys. 34, 277.

    Google Scholar 

  • Spruit, H. C.: 1981, Astron. Astrophys. 98, 155.

    Google Scholar 

  • Spruit, H. C., Title, A. M., and van Ballegooijen, A. A.: 1987, Solar Phys. 110, 115.

    Google Scholar 

  • Wang, Y.-M. and Sheeley, N. R.: 1989, Solar Phys. 124, 81.

    Google Scholar 

  • Wang, Y.-M., Nash, A. G., and Sheeley, N. R.: 1989, Astrophys. J. 347, 529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longcope, D., Choudhuri, A.R. The Orientational Relaxation of Bipolar Active Regions. Solar Physics 205, 63–92 (2002). https://doi.org/10.1023/A:1013896013842

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013896013842

Keywords

Navigation