Skip to main content
Log in

Levels and distribution of genetic diversity of coconut (Cocos nucifera L., var. Typica form typica) from Sri Lanka assessed by microsatellite markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The coconut variety Typica, form typica, commonly known as Sri Lanka tall coconuts is the most widely exploited and grown variety in Sri Lanka. Under the coconut bio-diversity conservation programme, several Typica populations have been collected by island-wide surveys and planted ex situ. Thirty-three coconut populations were subjected to microsatellite assay with eight coconut-specific microsatellite primer pairs in order to study the levels and distribution of genetic variation of the collected materials for formulating future collection strategies and selecting parents for the breeding programme. A total of 56 alleles were detected ranging from 3 to 10 alleles per primer pair with an average of 7 alleles per locus. Overall a very high level of genetic diversity was detected (0.999) for all the populations studied ranging from 0.526 for population Debarayaya to 0.683 for population Dickwella. Only four introduced coconut populations, i.e. Clovis, Margeret, Dickwella, Mirishena and an embryo-cultured population were clearly separated from the resulting dendrogram. A very high level of within population variation (99%)accounted for native populations suggests a common history and a restricted genetic base for native Sri Lankan tall coconuts. Categorization of alleles into different classes according to their frequency and distribution confirmed the results of the dedrogram and concluded the adequacy of single large collection from the entire target area to represent the total genetic diversity in Sri Lanka. This study discusses useful information regarding conservation and breeding of coconut in Sri Lanka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, G.R., W.K. Thompson & G.M. Halloran, 1997. RAPD analysis of South Pacific coconut palm populations. Crop Sci 37: 992–997.

    Article  Google Scholar 

  • Bhaskara Rao, E.V.V. & R.V. Pillai, 1984. Characterization of coconut germplasm based in fruit component analysis. In: K.A.V. Bavappa et al. (Eds.), Plantation Crops. Proc fifth Annual Symp. Published by PLACKOSYM standing committee.

  • Bowcock, A.M., A. Ruiz-Linares, J. Tomfohrde, E. Minch, J.R. Kidd & L.L. Cavalli-Sforza, 1994. High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A.H.D., 1978. Isozymes, plant population genetic structure and genetic conservation. Theor Appl Genet 52: 145–157.

    Article  Google Scholar 

  • Chung, M.G. & S.S. Kang, 1994. Genetic-variation and populationstructure in Korean populations of Eurya japonica (Theaceae). Amer J Bot 81: 1077–1082.

    Article  Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1987. A rapid DNA isolation procedure for small amounts of leaf tissue. Phytochem Bull 19: 11–15.

    Google Scholar 

  • Di Rienzo A., A.C. Peterson, J.C. Garza, A.M. Valdes, M. Slatkin & N.B. Freime, 1994. Mutation processes of simple sequence repeat loci in human populations. Proc Nat Acad Sci USA 91: 3166–3170.

    Article  PubMed  CAS  Google Scholar 

  • Ennos, R.A., R. Worrell & D.C. Malcolm, 1998. The genetic management of native species in Scotland. Forestry 71: 1–22.

    Article  Google Scholar 

  • Excoffier, L., P.E. Samuse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1995. PHYLIP (Phylogeny Inference Package), Version 3.57c, Dept. Of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Hamrick, J.L.,M.J.W. Godt & S.L. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124.

    Article  Google Scholar 

  • Hamrick, J.L. & M.J.W. Godt, 1990. Allozyme diversity in plant species. Chapter 3. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir (Eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer, Sunderland, MS.

    Google Scholar 

  • Huff, D.R., R. Peakall & P.E. Smouse, 1993. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm]. Theor Appl Genet 86: 927–934.

    Article  CAS  Google Scholar 

  • Karunanayake, K., 1982. Coconut in the economy of Sri Lanka. Marga Institute (Sri Lanka Center for Development Studies), Doc. M 24.

  • Lawrence, M.J. & N. Rajanaidu, 1985. The genetic structure of natural populations and sampling strategy. Proc IntWorkshop on Oil Palm Germplasm and Utilization. Selangor, Malaysia, March 1985. pp. 15–26.

  • Leonardi, S. & P. Menozzi, 1995. Genetic variability of Fagus sylvatica L. in Italy - The role of Postglacial recolonization. Heredity 75: 35–44.

    Google Scholar 

  • Liyanage, D.V., 1958. Varieties and forms of coconut palms grown in Ceylon. Ceylon Coconut Quarterly 9: 1–10.

    Google Scholar 

  • Liyanage, D.V., 1977. Report in Survey of Coconut Germplasm in Indonesia. UNDP/FAO coconut industry development project. Document no. 1, Lembaga penelitian Tanaman Industri, Bogor. 30 pp.

    Google Scholar 

  • Maguire, T.L. & M. Sedgley, 1997. Genetic diversity in Banksia and Dryandra (Proteaceae) with emphasis on Banksia cuneata, a rare and endangered species. Heredity 79: 394–401.

    Article  CAS  Google Scholar 

  • Marshall, D.K. & A.H.D. Brown, 1975. Optimam sampling strategies in genetic conservation. In: O.H. Frankel & J.G.R. Hawkes (Eds.), Crop Genetic Resources for Today and Tomorrow, pp. 53–70. Cambridge, Cambridge University Press.

    Google Scholar 

  • Medosa, A.R.M. & E.N. Balingasa, 1978. Coconut Genetic Resources Collection in the Philippines, Paper for the IBPGR Consultation of Coconut Genetic Resources, FAO, Rome. 10 pp.

    Google Scholar 

  • Nesbitt, K.A., B.M. Potts, R.E. Vaillancourt, A.K. West & J.B. Reid, 1995. Partitioning and Distribution of RAPD variation in forest tree species Eucalyptus globulus (Myrtaceae). Heredity 74: 628–637.

    Google Scholar 

  • Morgante, M. & A.M. Olivieri, 1993. PCR amplification of microsatellite markers in plant genetics. Plant J 3: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Perera, A.A.L., R.R.A. Peries, R.B. Attanayake & W.B.S. Fernando, 1992. In: R. Mahindapala (Ed.), Annual Reports of the Coconut Research Institute of Sri Lanka.

  • Perera, L., R.R.A. Peries & W.M.U. Fernando, 1996. Collection and Conservation of coconut biodiversity in Sri Lanka. Int Plant Genet Res Newsl 106: 1–4.

    Google Scholar 

  • Perera, L., J.R. Russell, J. Provan, J.W. McNicol & W. Powell, 1998. Evaluating Genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96: 545–550.

    Article  CAS  Google Scholar 

  • Perera, L., J.R. Russell, J. Provan & W. Powell, 1999. Identification and characterisation of microsatellites in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8: 344–346.

    PubMed  CAS  Google Scholar 

  • Peries, R.R.A., N.A. Tennakoon & L. Perera, 1992. Towards a radical shifts to low external inputs in the coconut sub-sector in Sri Lanka. In: U. Kopke & D.G. Schulz (Eds.), Proc 9th IFOAM Sci Conf. Sao Paulo, Brazil. pp. 102–108.

  • Powell, W., G.C. Machray & J. Provan, 1996a. Polymorphism revealed by Simple Sequence Repeats. Trends in Plant Sci 1: 215–222.

    Google Scholar 

  • Powell, W., M. Morgante, C. Andre, M. Hanafey, M.J. Vogel, S.V. Tingey & A. Rafalski, 1996b. The comparison of RFLP RAPD RFLP and SSR (microsatellite) markers for germplasm analysis. Molec Breed 2: 225–238.

    Article  CAS  Google Scholar 

  • Provan, J., J.R. Russell, A. Booth & W. Powell, 1999. Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8: 505–511.

    Article  PubMed  CAS  Google Scholar 

  • Rafalski, A., M.J. Vogel, M. Morgante, W. Powell, C. Andre & S.V. Tingey, 1996. Generating and using DNA markers in plants. In: B. Birren & E. Lai (Eds.), Non Mammalian Genome Analysis: A Practical Guide, pp. 75–134. Academic Press.

  • Randles, J.W. & J.S. Imperial, 1984. Coconut Cadang-Cadang viroid. CMI/AA Descriptions of plant viruses. July 287.

  • Randles, J.W., D. Hanold & J.F. Julia, 1987. Small circular single stranded DNA associated with foliar decay disease of coconut palm in Vanuatu. J Gen Virol 68: 273–280.

    Article  CAS  Google Scholar 

  • Rossetto, M., R.W. Slade, P.R. Baverstock & R.J. Henry, 1999. Microsatellite variation and assessment of genetic structure in tea tree (Melaleuca alternifolia-Myrtaceae). Mol Ecol 8: 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Russel, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell & R. Waugh, 1997. Direct comparision of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714–722.

    Article  Google Scholar 

  • Santos, G.A., S.B. Cano, B.V. dela Cruz, M.C. Ilagan & R.T. Bahala, 1983. Paper presented at the planning workshop on national genetic resources programme of the Philippines, July 26–29, Continuing education center, U.P at Los Banos, Philippines.

  • Sri Lanka Census of Agriculture General Report for 1982, 1987. Department of Census and Statistics, Ministry of Plan Implementation, Colombo.

  • Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    PubMed  CAS  Google Scholar 

  • Soranzo, N., 1999. Genetic variation in native European populations of Pinus sylvestris (L.). Ph.D Thesis. University of Dundee, UK.

    Google Scholar 

  • Valdes, A.M., M. Slatkin & N.B. Freimer,1993. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133: 737–749.

    PubMed  CAS  Google Scholar 

  • Weber, J.L. & C. Wong, 1993. Mutation of human short tandem repeats. Hum Molec Genet 2: 1123–1128.

    PubMed  CAS  Google Scholar 

  • White, G. & W. Powell, 1997. Isolation and characterisation of microsatellite loci in Swietenia humilis (Meliaceae): an endangered tropical hardwood species. Mol Ecol 6: 851–860.

    Article  CAS  Google Scholar 

  • Wickramaratne, M.R.T., 1984. Report of the Genetics and Plant Breeding Division. In: R. Mahindapala (Ed.), Report for 1986. Coconut Research Institute, Sri Lanka, pp. 47–85.

    Google Scholar 

  • Wickramaratne, M.R.T. & W.G.A. Rathnasiri, 1986. New variety block of crop museum. In: R. Mahindapala (Ed.), Annual Report of the Coconut Research Institute of Sri Lanka, 56 pp.

  • Yeh, F.C., D.K.X. Chong & R.C. Yang, 1995. RAPD variation within and among natural populations of trembling aspen (Populus tremuloides Michx) from Alberta. Heredity 86: 454–460.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perera, L., Russell, J., Provan, J. et al. Levels and distribution of genetic diversity of coconut (Cocos nucifera L., var. Typica form typica) from Sri Lanka assessed by microsatellite markers. Euphytica 122, 381–389 (2001). https://doi.org/10.1023/A:1012987224319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012987224319

Navigation