Skip to main content
Log in

Silk fibroin-polyurethane scaffolds for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) is a highly promising protein for its surface and structural properties, associated with a good bio- and hemo-compatibility. However, its mechanical properties and architecture cannot be easily tailored to meet the requirements of specific applications.

In this work, SF was used to modify the surface properties of polyurethanes (PUs), thus obtaining 2D and 3D scaffolds for tissue regeneration. PUs were chosen for their well known advantageous properties and versatility; they can be obtained either as 2D (films) or 3D (foams) substrates. Films of a medical-grade poly-carbonate-urethane were prepared by solvent casting; PU foams were purposely designed and prepared with a morphology (porosity and cell size) adequate for cell growth. PU substrates were coated with fibroin by a dipping technique. To stabilize the coating layer, a conformational change of the protein from the α-form (water soluble) to the β-form (not water soluble) was induced.

Novel methodology in UV spectroscopy were developed for quantitatively analyzing the SF-concentration in dilute solutions. Pure fibroin was used as standard, as an alternative to the commonly used albumin, allowing real concentration values to be obtained.

SF-coatings showed good stability in physiological-like conditions. A treatment with methanol further stabilized the coating.

Preliminary results with human fibroblasts indicated that SF coating promote cell adhesion and growth, suggesting that SF-modified PUs appear to be suitable scaffolds for tissue engineering applications.

© 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Kaplan and K. Mcgrath, in “Protein-Based Materials” (Birkhäuser, Boston, 1997) pp. 105-124.

    Google Scholar 

  2. K. Y. Lee, S. J. Kong, W. H. Park, W. S. Ha and I. C. Kwon, Journal of Biomat. Sci. Polym. Ed. 9(9) (1998) 905-914.

    Google Scholar 

  3. K. Inouye, M. Kurokawa, S. Nishikawa and M. Tsukada, J. Biochem. Biophys. Methods 37 (1998) 159-164.

    Google Scholar 

  4. N. M. K. Lamba, K. A. Woodhouse and S. L. Cooper in “Polyurethanes in Biomedical Applications” (CRC Press LLC, 1998).

  5. M. Bradford, Anal. Biochem. 72 (1976) 248.

    Google Scholar 

  6. S. FarÈ, P. Petrini, S. Benvenuti, E. Piscitelli, M. L. Brandi and M. C. Tanzi, in Transaction of the 6th World Biomaterials Congress, 15–20 May 2000, Kamuela, Hawaii, USA, Copyright 2000 SFB, p. Aloha-3.

    Google Scholar 

  7. S. Nakamura, J. Magoshi and Y. Magoshi, in “Silk Polymers: Materials Science and Biotechnology” (American Chemical Society, Washington, DC 1994), pp. 211-221.

    Google Scholar 

  8. M. Tsukada, Y. Gotoh, M. Nagura, N. Minoura, N. Kasai and G. Freddi, Journal of Polymer Science: Part B: Polymer Physics 32 (1994) 961-968.

    Google Scholar 

  9. G. Freddi, G. Pessina and M. Tsukada, Int. J. Biol. Macromol. 24 (1999) 251-263.

    Google Scholar 

  10. X. Chen, Z. Shao, N. S. Marinkovic, L. M. Miller, P. Zhou and M. R. Chance, Biophys. Chem. 89 (2001), 25-34.

    Google Scholar 

  11. W. S. Muller, L. A. Samuelson, S. A. Fossey and D. Kaplan, in “Silk Polymers: Materials Science and Biotechnology” (American Chemical Society, Washington, DC 1994) pp. 343-352.

    Google Scholar 

  12. H. Yoshimizu and T. Asakura, J. Appl. Polym. Sci. 40 (1990) 1745-1756.

    Google Scholar 

  13. R. M. Silverstein, G. C. Blasser and T. C. Morrill, in “Spectrometric Identification of Organic Compounds” (Wiley & Sons, USA 1991) pp. 289-315.

    Google Scholar 

  14. M. C. Tanzi, S. FarÈ and P. Petrini, J. Biomat. Appl., Review 14 (2000) 325-366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Petrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrini, P., Parolari, C. & Tanzi, M.C. Silk fibroin-polyurethane scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine 12, 849–853 (2001). https://doi.org/10.1023/A:1012847301850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012847301850

Keywords

Navigation