Skip to main content
Log in

Nuclear Genetic Material as an Initial Substrate of Aging in Animals

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

General properties of aging in animals are considered on the basis of the literature evidence and the results obtained by the authors of this paper. The existence of a specific aging mechanism is inferred. The operation of this mechanism is controlled not only by genes but also by particular noncoding genomic sequences with variable structure. The beginning of senescence in animals is determined by DNA lesions located in neural cells and probably in a minor genomic fraction. The authors refute the narrow concept of aging as a mechanism increasing the probability of death. Mortality as a continuous process occurring with the probability of 100 percent is an integral attribute of living organisms on the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Finch, C.E., Longevity, Senescence and Genome, Chicago: Univ. of Chicago Press, 1990.

    Google Scholar 

  2. Frol'kis, V.V., Regulirovanie, prisposoblenie i starenie (Regulation, Adaptation, and Aging), Leningrad: Nauka, 1970.

    Google Scholar 

  3. Gaisinovich, A.E., Zarozhdenie i razvitie genetiki (The Origin and Development of Genetics), Moscow: Nauka, 1988.

    Google Scholar 

  4. Pirozhkov, S.I. and Safarova, G.L., Aging in a Population: Demographic Aspects, Usp. Gerontol., 1998, no. 2, pp. 24-32.

  5. Biologicheskii entsiklopedicheskii slovar' (Encyclopedic Dictionary on Biology), Gilyarov, M.S., Ed., Moscow: Sovetskaya Entsyklopediya, 1989, pp. 604-605.

    Google Scholar 

  6. Comfort, A., The Biology of Senescence, Edinburgh: Churchill Livins, 1979.

    Google Scholar 

  7. Luckinbill, L.S., Prospective and Retrospective Tests of Evolutionary Theories of Senescence, Arch. Gerontol. Geriatr., 1993, vol. 16, no. 1, pp. 17-32.

    Google Scholar 

  8. Finch, C.E. and Tanzi, R.E., Genetics of Aging, Science, 1997, vol. 278, pp. 407-411.

    Google Scholar 

  9. Altukhov, Yu.P., Allozyme Heterozygosity, Maturation Rate, and Life Span, Genetika (Moscow), 1998, vol. 34, no. 7, pp. 908-919.

    Google Scholar 

  10. Olovnikov, A.M., Aging as a Universal Chronic “Quantitative-Trait Disease”: Cell Aging and RNA-Dependent Complete Modulation of Gene Productivity, Usp. Gerontol., 1999, no. 3, pp. 54-64.

  11. Khalyavkin, A.V., Organism–Environment Interaction and Causes of Aging, Usp. Gerontol., 1998, no. 2, pp. 49-58.

  12. Walford, R.L., Maximum Life Span, New York, 1983.

  13. Feller, G., Vvedenie v teoriyu veroyatnostei (Introduction to the Probability Theory), Moscow: Mir, 1974.

    Google Scholar 

  14. Akif'ev, A.P. and Potapenko, A.I., Bioeschatology: Major Directions and the First Results of Studies, Usp. Gerontol., 1997, vol. 1, no. 1, pp. 41-46.

    Google Scholar 

  15. Obukhova, L.K. and Akif'ev, A.P., Paradoxes of Aging, Khim. Zhizn', 1980, no. 10, pp. 25-29.

  16. Barro, T. and Tipler, F., The Antropic Cosmological Principle, Oxford, 1986.

  17. Nikitin, V.A., Nauka, filosofiya, religiya: Mezhdunarodnaya konferentsiya. (Int. Conf. “Science, Philosophy, Religion”), Dubna, 1997, pp. 7-21.

  18. Akif'ev, A.P. and Degtyarev, S.V., The Anthropic Principle in Biology and Radiobiology, Radiats. Biol. Radiekol., 1999, vol. 39, no. 1, pp. 5-9.

    Google Scholar 

  19. Reardron, T.T. and Sangar, A., The Repair of UV-Damaged DNA, Nucleic Acid Mol. Biol., 1991, vol. 9, pp. 54-69.

    Google Scholar 

  20. Akif'ev, A.P., Obukhova, L.K., and Izmailov, D.M., To a Solution of the Mystery of Aging of a Living Organism, Vestn. Ross. Akad. Nauk, 1992, no. 5, pp. 82-92.

  21. Rossignol, M. and Silar, P., Genes That Control Longevity in Podospora anserina, Mech. Aging Dev., 1996, vol. 90, no. 3, pp. 183-193.

    Google Scholar 

  22. Helfand, S.L., Blake, K.J., Rogina, B., et al., Temporal Patterns of Gene Expression in the Antenna of the Adult Drosophila melanogaster, Genetics, 1995, vol. 140, no. 2, pp. 549-555.

    Google Scholar 

  23. Lithgow, G.J., Invertebrate Gerontology-The Age Mutations of Caenorhabditis elegans, BioEssays, 1996, vol. 18, no. 10, pp. 809-815.

    Google Scholar 

  24. Ebert, R.H., Shammas, M.A., Sohal, B.H., et al., Defining Genes That Govern Longevity in Caenorhabditis elegans, Dev. Genet., 1996, vol. 18, no. 2, pp. 131-143.

    Google Scholar 

  25. Johnson, T.E., Tedesco, P.M., and Lithgow, G.J., Comparing Mutants, Selective Breeding and Transgenics in the Dissection of Aging Processes of Caenorhabditis elegans, Genetics, 1993, vol. 91, nos. 1-3, pp. 65-77.

    Google Scholar 

  26. Pennisi, E., Single Gene Controls Fruit Fly Life Span, Science, 1998, vol. 282, p. 856.

    Google Scholar 

  27. Potapenko, A.I., Rudakovskaya, E.G., and Akif'ev, A.P., An Experimental Approach to the Analysis of the Cell and Molecular Substrates of Aging: The Effect of 5-Bromo-2'-Deoxyuridine on the Life Span and Behavior in D. melanogaster, Ontogenez (Moscow), 1998, vol. 28, no. 6, pp. 680-686.

    Google Scholar 

  28. Obukhova, L.K., Kinetics of Aging and Directional Search for Geroprotectors among Antioxidants (Experimental Studies), Doctoral (Biol.) Dissertation, Moscow, 1982.

  29. Demograficheskii entsiklopedicheskii slovar' (Encyclopedic Dictionary on Demography), Moscow: Sovetskaya Entsyklopediya, 1985, p. 461.

  30. Austriaco, N.R., To Bud until Death-The Genetics of Aging in the Yeast Saccharomyces, Yeast, 1996, vol. 12, no. 7, pp. 623-630.

    Google Scholar 

  31. Potapenko, A.I., Akif'ev, A.P., and Ivanov, V.I., Radiation-Induced Reduction in the D. melanogaster Life Span: 1. Analysis of the Survival Curves after γ-Irradiation of Adults, Radiobiologiya, 1982, vol. 22, pp. 203-208.

    Google Scholar 

  32. Weismann, A., Lektsii po evolyutsionnoi teorii (Lectures on the Theory of Evolution), Moscow: M. i S. Sabashnikovy, 1905.

    Google Scholar 

  33. Brash, D.E. and Hart, R.W., The Biology of Aging, Behnke, A., Ed., New York: Plenum, 1978, p. 57.

    Google Scholar 

  34. Horowitz, J., Alpha Crystallin Can Function as a Molecular Chaperon, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 10 449-10 456.

    Google Scholar 

  35. Nazarov, V.I., Finalizm v sovremennom evolyutsionnom uchenii (Finalism in the Modern Evolutionary Teaching), Moscow: Nauka, 1984.

    Google Scholar 

  36. Khokhlov, A.N., Proliferatsiya i starenie (Proliferation and Aging), Moscow: VINITI, 1988.

    Google Scholar 

  37. Wylic, Ch., Germ Cells, Cell (Cambridge, Mass.), 1999, vol. 96, pp. 165-174.

    Google Scholar 

  38. Hayflick, L., Current Theories of Biological Aging, Fed. Proc., 1975, vol. 34, pp. 9-13.

    Google Scholar 

  39. Akif'ev, A.P. and Potapenko, A.I., The Multistep Character of DNA Changes and Its Role in the Process of Aging, Itogi Nauki Tekh., Ser.: Obshch. Probl. Biol., 1986, vol. 6, pp. 3-23.

    Google Scholar 

  40. Vilenchik, M.M., Molekulyarnye mekhanizmy stareniya (Molecular Mechanisms of Aging), Moscow: Mir, 1970.

    Google Scholar 

  41. Atlan, H., Jaime, M.D., and Bimm, P.D.R., Difference between Radiation-Induced Life Shortening and Natural Aging in Drosophila melanogaster, J. Gerontol., 1969, vol. 24, no. 1, pp. 1-5.

    Google Scholar 

  42. Hall, K.Y., Bergmann, K., and Benirschke, K.A., Correlation between DNA Repair in Primate Lymphocytes and Fibroblasts and Species Maximum Achievable Live Span, Mech. Aging Dev., 1984, vol. 24, no. 2, pp. 163-173.

    Google Scholar 

  43. Harman, D., Free-Radical Theory of Aging: Increasing the Functional Life Span, Ann. N.Y. Acad. Sci., 1994, vol. 717, pp. 1-15.

    Google Scholar 

  44. Emanuel', N.M., Several Molecular Mechanisms and Prospects of Aging Prevention, Izv. Akad. Nauk SSSR, Ser. Biol., 1975, no. 4, pp. 503-511.

  45. Sinclair, D.A. and Guarente, L., Extrachromosomal rDNA Circles-A Cause of Aging in Yeast, Cell (Cambridge, Mass.), 1997, vol. 91, pp. 1033-1042.

    Google Scholar 

  46. King, C.M., Gillespie, E.S., McKenna, P.G., and Barnet, Y.A., An Investigation of Mutation as a Function of Age in Humans, Mutat. Res., 1994, vol. 6, pp. 79-90.

    Google Scholar 

  47. Martin, G.M., Smith, A.C., Ketterer, D.J., et al., Increased Chromosomal Aberrations in First Metaphases of Cells Isolated from the Kidneys of Aged Mice, Isr. J. Med. Sci., 1985, vol. 21, pp. 296-301.

    Google Scholar 

  48. Spivak, I.M., Hereditary Disorders with Primary and Secondary Defects in DNA Repair, Tsitologiya, 1999, vol. 41, pp. 338-367.

    Google Scholar 

  49. Potapenko, A.I. and Akif'ev, A.P., DNA as a Substrate of Radiation-Induced Life Shortening, Tezisy Vsesoyuznogo simpoziuma “Molekulyarnye i kletochnye mekhanizmy stareniya” (Proc. All-Union Symp. “Molecular and Cell Mechanisms of Aging”), Kiev, 1981, p. 144.

  50. Kirkwood, T.B.L., DNA, Mutations and Aging, Mutat. Res., 1988, pilot issue, pp. 7-13.

  51. Murray, V., Are Transposons a Cause of Aging?, Mutat. Res., 1990, vol. 237, pp. 59-63.

    Google Scholar 

  52. Vinogradov, A.E., The Paradox of Genome Size and the Problem of Excessive DNA, Tsitologiya, 1999, vol. 41, pp. 5-13.

    Google Scholar 

  53. Egilmez, N.K. and Reis, R., Age-Dependent Somatic Excision of Transposable Element Tc1 in Caenorhabditis elegans, Mutat. Res., 1994, vol. 316, no. 1, pp. 17-24.

    Google Scholar 

  54. Clark, A.G. and Guadalupe, R.N., Probing the Evolution of Senescence in Drosophila melanogaster with P-Element Tagging, Genetica (The Hague), 1995, vol. 96, no. 3, pp. 225-234.

    Google Scholar 

  55. Woodruff, R.C. and Nikitin, A.G., P DNA Element Movement in Somatic Cells Reduces Life Span in Drosophila melanogaster: Evidence in Support of the Somatic Mutation Theory of Aging, Mutat. Res., 1995, vol. 338, no. 1, pp. 35-42.

    Google Scholar 

  56. Nikitin, A.G. and Woodruff, R.C., Somatic Movement of the Mariner Transposable Element and Life Span of Drosophila Species, Mutat. Res., 1995, vol. 338, nos. 1-6, pp. 43-49.

    Google Scholar 

  57. Vieira, C., Lepetit, D., Dumont, S., and Biemont, C., Wake Up of Transposable Elements Following Drosophila simulans Worldwide Colonization, Mol. Biol. Evol., 1999, vol. 16, p. 1251.

    Google Scholar 

  58. Olovnikov, A.M., The Principle of Marginotomy in Template Synthesis of Polynucleotides, Dokl. Akad. Nauk SSSR, 1971, vol. 201, no. 6, pp. 1469-1499.

    Google Scholar 

  59. Allsopp, R.C., Models of Initiation of Replicative Senescence by Loss of Telomeric DNA, Exp. Gerontol., 1996, vol. 31, nos. 1-2, pp. 235-243.

    Google Scholar 

  60. Vaziri, H. and Benchimol, S., From Telomere Loss to p53 Induction and Activation of a DNA-Damage Pathway at Senescence: The Telomere Loss DNA-Damage Model of Cell Aging, Exp. Gerontol., 1996, vol. 31, nos. 1-2, pp. 295-301.

    Google Scholar 

  61. Wright, W.E. and Shay, J.W., Telomere Positional Effects and the Regulation of Cellular Senescence, Perspectives, 1992, vol. 8, pp. 192-197.

    Google Scholar 

  62. Bodnar, A.G., Ouellette, M., Holt, M.F., et al., Extension of Life Span by Introduction of Telomerase into Normal Human Cells, Science, 1998, vol. 279, pp. 349-352.

    Google Scholar 

  63. Levy, M.Z., Telomere and Replication Problem and Cell Aging, J. Mol. Biol., 1992, vol. 225, no. 4, pp. 951-960.

    Google Scholar 

  64. Olovnikov, A.M., Telomeres, Telomerase and Aging: Origin of the Theory, Exp. Gerontol., 1996, vol. 31, pp. 443-448.

    Google Scholar 

  65. Kol'tover, V.K., The Free-Radical Theory of Aging: Modern State and Prospects, Usp. Gerontol., 1998, no. 2, pp. 37-42.

  66. Nakaidze, N.Sh., Akif'ev, A.P., and Obukhova, L.K., To the Problem of Initial Substrate of Aging in D. melanogaster, Izv. Akad. Nauk SSSR, Ser. Biol., 1980, no. 6, pp. 926-929.

  67. Izmaylov, D.M. and Obukhova, L.K., Geroprotector Efficiency Depends on Viability of Control Population: Life Span Investigation in Drosophila melanogaster, Mech. Aging Dev., 1996, vol. 91, pp. 155-164.

    Google Scholar 

  68. Lints, F.A., Lints, C.V., Delince, J., et al., Unexplained Variations in Life Span of the Oregon R Strain of Drosophila melanogaster over a Four-Year Period, Exp. Gerontol., 1989, vol. 24, no. 3, pp. 265-271.

    Google Scholar 

  69. Evans, S.K., Bertuch, A.A., and Lunsblad, V., Telomeres and Telomerase: At the End It All Comes Together, Trends Cell Biol., 1999, vol. 9, pp. 329-331.

    Google Scholar 

  70. Emanuel', N.M., Akif'ev, A.P., and Potapenko, A.I., Initiating Events and Stages of the Aging of Animal Cells: At the Way to Molecular Biology of Aging, Biologicheskie problemy stareniya i uvelicheniya prodolzhitel'nosti zhizni (Biological Problems of Aging and Increasing the Life Span), Moscow: Mosk. Obshch. Ispyt. Prirody, 1988, pp. 5-13.

    Google Scholar 

  71. Potapenko, A.I. and Obukhova, L.K., DNA Secondary Structure Defects Recognized by Nuclease S1: II. A Possible Role in Aging of Mammals, Izv. Ross. Akad. Nauk, Ser. Biol., 1992, no. 6, pp. 940-943.

  72. Potapenko, A.I., Akif'ev, A.P., and Ivanov, V.I., Radiation-Induced Life Shortening in D. melanogaster: 2. A Sensibilizing Effect of 5-Bromo-2'-Deoxyuridine, Radiobiologiya, 1982, vol. 22, pp. 318-322.

    Google Scholar 

  73. Dubinin, N.P., Potentsial'nye izmeneniya i mutatsii. Molekulyarnaya tsitogenetika (Potential Changes and Mutations: Molecular Cytogenetics), Moscow: Nauka, 1978.

    Google Scholar 

  74. Holmbend, K. and Meijer, A.E., Chromosomal Instability in Human Lymphocytes after Low-Dose-Rate γ-Irradiation and Delayed Mitogen Stimulation, Int. J. Radiat. Biol., 1998, vol. 73, pp. 21-34.

    Google Scholar 

  75. Okada, S., Radiatsionnaya biokhimiya kletki (Radiation Biochemistry of the Cell), Moscow: Mir, 1974, pp. 167-184.

    Google Scholar 

  76. Riski, R.M. and Riski, T.M., Somatic Cell Lesions Induced by the Base Analog 5-Bromdesoxyuridine, Cancer Res., 1969, vol. 29, pp. 201-206.

    Google Scholar 

  77. Benzer, S., Behavioral Mutants of Drosophila Isolated by Counter-Current Distribution, Proc. Natl. Acad. Sci. USA, 1967, vol. 58, pp. 1112-1119.

    Google Scholar 

  78. Zhivotovsky, L.A., Lazebnyi, O.E., and Imasheva, A.G., Estimation of the Parameters of Photoactivity Distribution in Drosophila, Genetika (Moscow), 1989, vol. 25, no. 1, pp. 75-83.

    Google Scholar 

  79. Izmaylov, D.M., Obukhova, L.K., Okladnova, O.V., and Akifyev, A.P., Phenomenon of Life-Span Instability in Drosophila melanogaster: I. Nonrandom Origin of Life-Span Variations in Successive Generations, Exp. Gerontol., 1993, vol. 28, pp. 169-181.

    Google Scholar 

  80. Izmaylov, D.M., Obukhova, L.K., Okladnova, O.V., and Akifyev, A.P., Phenomenon of Life-Span Instability in Drosophila melanogaster: II. Change in Rhythm of Natural Variations of Life Span after Single Exposure to γ-Radiation, Exp. Gerontol., 1993, vol. 28, pp. 181-184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akifyev, A.P., Potapenko, A.I. Nuclear Genetic Material as an Initial Substrate of Aging in Animals. Russian Journal of Genetics 37, 1213–1223 (2001). https://doi.org/10.1023/A:1012589222176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012589222176

Keywords

Navigation