Skip to main content
Log in

The Structure and Evolutionary Role of the PenelopeMobile Element in the Drosophila virilisSpecies Group

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The mobile element Penelopeis activated and mobilizes several other transposons in dysgenic crosses in Drosophila virilis. Its structure proved to be complex and to vary greatly in all examined species of the virilisgroup. Phylogenetic analysis of the reverse transcriptase (RT) domain assigned Penelopeto a new branch, rather than to any known family, of LTR-lacking retroelements. Amino acid sequence analysis showed that the C-terminal domain of the Penelopepolyprotein is an active endonuclease, which is related to intron-encoded endonucleases and to bacterial repair endonuclease UrvC, and may act as an integrase. Retroelements coding for a putative endonuclease that differs from typical integrase have not been known thus far. Phylogenetic analysis divided the Penelopecopies from several virilisspecies into two subfamilies, one including virtually identical full-length copies, and the other comprising highly divergent defective copies. The results suggest both vertical and horizontal transfer of the element. Possibly, Penelopeinvasion recurred during evolution and contributed to genome rearrangement in the virilisspecies. Chromosome aberrations detected in D. virilis, which is now being invaded by Penelope, is direct evidence for this assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Patterson, J. and Stone, W., Evolution in the Genus Drosophila, New York: Macmillan, 1952.

    Google Scholar 

  2. Spicer, G., Ann. Ent. Soc. Am., 1992, vol. 85, pp. 11–25.

    Google Scholar 

  3. Evgen'ev, M.B., Mndzhoyan, E.I., Zelentsova, E.S., et al., Mol. Biol., 1998, vol. 32, pp. 184–192.

    Google Scholar 

  4. Gall, J.G. and Atherton, D.D., J. Mol. Biol., 1974, vol. 85, pp. 633–664.

    Google Scholar 

  5. Cohen, E. and Bowman, S., Chromosoma, 1979, vol. 73, pp. 327–355.

    Google Scholar 

  6. Arkhipova, I., Lyubomirskaya, N., and Ilyin, Y., Retroposons of Drosophila, Austin, Tex.: Landes, 1995.

    Google Scholar 

  7. Anxolabéhére, D., Kidwell, M., and Pèriquet, G., Mol. Biol. Evol., 1988, vol. 5, pp. 252–269.

    Google Scholar 

  8. Kidwell, M., J. Hered., 1994, vol. 85, pp. 339–346.

    Google Scholar 

  9. Evgen'ev, M., Yenikopolov, G., Peunova, N., and Ilyin, Y., Chromosoma, 1982, vol. 85, pp. 375–386.

    Google Scholar 

  10. Scheinker, V., Lozovskaya, E., Bishop, J., et al., Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 9615–9619.

    Google Scholar 

  11. Petrov, D., Schutzman, J., Hartl, D., and Lozovskaya, E., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8050–8054.

    Google Scholar 

  12. Evgen'ev, M., Zelentsova, H., Shostak, N., et al., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 196–201.

    Google Scholar 

  13. Vieira, J., Vieira, C.P., Hartl, D.L., and Lozovskaya, E.R., Genet. Res., 1998, vol. 71, pp. 109–117.

    Google Scholar 

  14. Kidwell, M., Kidwell, J., and Sved, J., Genetics, 1977, vol. 36, pp. 813–833.

    Google Scholar 

  15. Lozovskaya, E., Scheinker, V., and Evgen'ev, M., Genetics, 1990, vol. 126, pp. 619–623.

    Google Scholar 

  16. Evgen'ev, M., Zelentsova, H., Mnjoian, L., et al., Chromosoma, 2000, vol. 109, pp. 350–357.

    Google Scholar 

  17. Lim, J., Dros. Inf. Serv., 1993, vol. 72, pp. 73–77.

    Google Scholar 

  18. Gubenko, I. and Evgen'ev, M., Genetica, 1984, vol. 65, pp. 127–139.

    Google Scholar 

  19. Altschul, S., Madden, T., Schaffer, A., et al., Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Google Scholar 

  20. Felsenstein, J., Methods Enzymol., 1996, vol. 266, pp. 418–427.

    Google Scholar 

  21. Thompson, J., Gibson, T., Plewniak, F., et al., Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882.

    Google Scholar 

  22. Zelentsova, H., Poluectova, H., Mnjoian, L., et al., Chromosoma, 1999, vol. 108, pp. 443–456.

    Google Scholar 

  23. Xiong, Y. and Eickbush, T., EMBO J., 1990, vol. 90, pp. 3353–3362.

    Google Scholar 

  24. Aravind, L., Walker, D., and Koonin, E., Nucleic Acids Res., 1999, vol. 27, pp. 1223–1242.

    Google Scholar 

  25. Malik, H. and Eickbush, T., Genetics, 2000, vol. 145, pp. 193–203.

    Google Scholar 

  26. Koonin, E., Mushegian, A., and Bork, P., Trends Genet., 1996, vol. 12, pp. 334–336.

    Google Scholar 

  27. Capy, P., Anxolabehere, D., and Langin, T., Trends Genet., 1994, vol. 10, pp. 7–12.

    Google Scholar 

  28. Zelentsova, E., Vashakidze, R., Kraev, A., and Evgen'ev, M., Chromosoma, 1986, vol. 93, pp. 469–476.

    Google Scholar 

  29. Tsuno, K. and Yamaguchi, O., Jpn. J. Genet., 1991, vol. 66, pp. 49–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezin, G.T., Makarova, K.V., Velikodvorskaya, V.V. et al. The Structure and Evolutionary Role of the PenelopeMobile Element in the Drosophila virilisSpecies Group. Molecular Biology 35, 682–690 (2001). https://doi.org/10.1023/A:1012370103209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012370103209

Navigation