Skip to main content
Log in

Tin Oxide Thin Films Grown on the (1012) Sapphire Substrate

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Tin oxide thin films were deposited on the R-cut sapphire substrate by the electron-beam evaporation of a ceramic SnO2 source. X-ray diffraction and transmission electron microscopy studies revealed that the films deposited at lower temperatures were amorphous while those grown at temperatures above 350°C consisted of the α-SnO phase with the PbO type structure. Epitaxial α-SnO films on the R-cut sapphire substrate were obtained when deposited at 600°C. Atomic force microscopy studies showed that films deposited at low temperature have a smooth surface, while epitaxial SnO films deposited at high temperatures (above 600°C) have a relatively rough surface. The atomic mobilities in the films at the various deposition temperatures and the lattice mismatch between the films and the substrates ultimately determine the microstructure and surface mophology. X-ray photoelectron spectroscopy analysis shows that the Sn/O ratios are 52.7/47.6 for the amorphous film deposited at the ambient temperature (∼30°C), 48.8/51.2 for the films deposited at 350°C, and 49.2/50.8 for the epitaxial film deposited at 600°C. Electrical properties were determined by four point probe measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Göpel, J. Hesse, and J.N. Zemel (eds.), Sensors-A Comprehensive Survey, Vol. 2. Chemical and Biochemical Sensors (Parts 1 and 2) (VCH Weinheim, New York, 1991).

    Google Scholar 

  2. K. Ihokura and J. Watson, The Stannic Oxide Gas Sensor-Principles and Applications (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  3. G. Advani and A. Jordan, J. Electrochem. Soc., 123, 29 (1990).

    Google Scholar 

  4. N. Yamazoe, New approaches for improving semiconductor gas sensors, in Proc. 3rd Int. Meet. Chem. Sensors, Cleveland, OH, USA, Sept. 24-26, 1990, pp. 3-8.

  5. C. Xu, J. Tamaki, M. Miur, and N. Yamazoe, Sensors and Actuators B, 3, 147 (1991).

    Google Scholar 

  6. N.Y. Shishkin, I.M. Zharsky, V.G. Lugin, and V.G. Zarapin, Sensors and Actuators B, 48, 403 (1998).

    Google Scholar 

  7. M.C. Horrillo, P. Serrini, J. Santos, and L. Manes, Sensors and Actuators B, 45, 193 (1997).

    Google Scholar 

  8. S. Semancik and R.E. Cavicchi, Thin Solid Films, 206, 81 (1991).

    Google Scholar 

  9. M.H. Reddy and A.N. Chandorkar, Sensors and Actuators B, 9, 1 (1992).

    Google Scholar 

  10. W.I. Cho, H. Jang, and S.R. Lee, Scripta Metallurgica et Materialia, 32, 815 (1995).

    Google Scholar 

  11. R. Larciprete, E. Borsella, P. De Padova, P. Perfetti, and C. Crotti, Journal of Vacuum Science and Technology A, 15, 2492 (1997).

    Google Scholar 

  12. D. Liu, Q. Wang, H.L.M. Chang, and H. Chen, Journal of Material Research, 10, 1516 (1995).

    Google Scholar 

  13. F.M. Amanullah, K.J. Pratap, and V. Hari Babu, Materials Science and Engineering B, 52, 93 (1998).

    Google Scholar 

  14. K. Murakami, I. Yagi, and S. Kaneko, Journal of American Ceramic Society, 79, 2557 (1996).

    Google Scholar 

  15. L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1963), pp. 446-450.

    Google Scholar 

  16. W. Göpel and K.D. Schierbaum, Sensors and Actuators B, 26, 1 (1995).

    Google Scholar 

  17. J.-G. Zheng, X.Q. Pan, M. Schweizer, U. Weimar, W. Göpel, and M. Rühle, Phil. Mag. Lett., 73, 93 (1996).

    Google Scholar 

  18. J.-G. Zheng, X.Q. Pan, M. Schweizer, F. Zhou, U. Weimar, W. Göpel and M. Rühle, J. Appl. Phys., 79, 7688 (1996).

    Google Scholar 

  19. J.-G. Zheng, X.Q. Pan, M. Schweizer, U. Weimar, W. Göpel and M. Rühle, J. Mater. Sci., 31, 2317 (1996).

    Google Scholar 

  20. X.Q. Pan and J.G. Zheng, “Microstructure of and crystal defects in nanocrystalline tin dioxide thin films”, in Polycrystalline Thin Films-Structure, Texture, Properties and Applications III, edited by S.M. Yalisove, B.L. Adams, J.S. Im, Y. Zhu, and F.R. Chen (Mater. Res. Soc. Proc. Vol. 472, Pittsburgh, PA, 1997), pp. 87-92.

  21. S.K. Song, J.S. Cho, W.K. Choi, H.J. Jung, D. Choi, J.Y. Lee, H.K. Baik, and S.K. Koh, Sensors and Actuators B, 46, 42 (1998).

    Google Scholar 

  22. J. Pannetier and G. Denes, Acta Crystallogr. B, 36, 2763 (1980).

    Google Scholar 

  23. C. Thompson and R. Carel, Materials Science and Engineering B, 32, 211 (1995).

    Google Scholar 

  24. L.L. Kazmerski, Polycrystalline and Amorphous Thin Films and Devices (Academic Press, New York, 1980).

    Google Scholar 

  25. Z.D. Guan, Z.T. Zhang, and J.S. Jiao,Physical Properties of Non-organic Materials (Tsinghua University Press, Beijing, China, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, X., Fu, L. Tin Oxide Thin Films Grown on the (1012) Sapphire Substrate. Journal of Electroceramics 7, 35–46 (2001). https://doi.org/10.1023/A:1012270927642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012270927642

Navigation