Skip to main content
Log in

Mouse Astrocytoma Models: Embryonic Stem Cell Mediated Transgenesis

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The development of rational and targeted therapies for human astrocytomas is heavily dependent on our knowledge of its molecular pathogenesis, combined with the generation of appropriate pre-clinical mouse models. The ability to manipulate the mouse genome, which is nearing completion and is highly homologous to its human counterpart, has significantly accelerated our ability to create transgenic mouse models that replicate the pathological and molecular characteristics found in human astrocytomas. These models should serve to further our knowledge of the molecular pathogenesis of human astrocytomas, and serve as useful reagents to test conventional and novel thera-break peutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A: Astrocytespecific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61: 4425–4431, 2001

    Google Scholar 

  2. Son JH, Chung JH, Huh SO, Park DH, Peng C, Rosenblum MG, Chung YI, Joh TH: Immortalization of neuroendocrine pinealocytes from transgenic mice by targeted tumorigenesis using the tryptophan hydroxylase promoter. Brain Res Mol Brain Res 37: 32–40, 1996

    Google Scholar 

  3. Fung KM, Chikaraishi DM, Suri C, Theuring F, Messing A, Albert DM, Lee VM, Trojanowski JQ: Molecular phenotype of simian virus 40 large T antigen-induced primitive neuroectodermal tumors in four different lines of transgenic mice. Lab Invest 70: 114–124, 1994

    Google Scholar 

  4. Huang CJ, Spinella F, Nazarian R, Lee MM, Dopp JM, de Vellis J: Expression of green fluorescent protein in oligodendrocytes in a time-and level-controllable fashion with a tetracycline-regulated system. Mol Med 5: 129–137, 1999

    Google Scholar 

  5. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM: Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16: 2985–2995, 1997

    Google Scholar 

  6. Rovigatti U, Afanasyeva T, Brandner S, Hainfellner JA, Kiess M, Maddalena A, Malin G, Rulicke T, Steinbach J, Weissenberger J, Aguzzi A: Transgenic mice as research tools in neurocarcinogenesis. J Neurovirol 4: 159–174, 1998

    Google Scholar 

  7. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156, 1981

    Google Scholar 

  8. Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J: Embryonic stem cells alone are able to support fetal development in the mouse. Development 110: 815–821, 1990

    Google Scholar 

  9. O'shea KS: Embryonic stem cell models of development. Anat Rec 257: 32–41, 1999

    Google Scholar 

  10. Capecchi MR: Altering the genome by homologous recombination. Science 244: 1288–1292, 1989

    Google Scholar 

  11. DePrimo SE, Stambrook PJ, Stringer JR: Human placental alkaline phosphatase as a histochemical marker of gene expression in transgenic mice. Transgenic Res 5: 459–466, 1996

    Google Scholar 

  12. Garrick D, Fiering S, Martin DI, Whitelaw E: Repeatinduced gene silencing in mammals. Nat Genet 18: 56–59, 1998

    Google Scholar 

  13. Lobe CG, Nagy A: Conditional genome alteration in mice. Bioessays 20: 200–208, 1998

    Google Scholar 

  14. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M, Marin-Padilla M, Tenen DG, Speck NA, Zhang DE: Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 15: 303–306, 1997

    Google Scholar 

  15. Mansuy IM, Bujard H: Tetracycline-regulated gene expression in the brain. Curr Opin Neurobiol 10: 593–596, 2000

    Google Scholar 

  16. Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis 26: 99–109, 2000

    Google Scholar 

  17. Hamilton DL, Abremski K: Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol 178: 481–486, 1984

    Google Scholar 

  18. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, Bronson RT, Jacks T: Mouse models of tumor development in neurofibromatosis type 1. Science 286: 2172–2176, 1999

    Google Scholar 

  19. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF: Mouse tumor model for neurofibromatosis type 1. Science 286: 2176–2179, 1999

    Google Scholar 

  20. Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21: 70–71, 1999

    Google Scholar 

  21. Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A: Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208: 281–292, 1999

    Google Scholar 

  22. Novak A, Guo C, Yang W, Nagy A, Lobe CG: Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis. 28: 147–155, 2000

    Google Scholar 

  23. Metzger D, Clifford J, Chiba H, Chambon, P: Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 92: 6991–6995, 1995

    Google Scholar 

  24. Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schutz G: Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24: 1404–1411, 1996

    Google Scholar 

  25. Danks RA, Orian JM, Gonzales MF, Tan SS, Alexander B, Mikoshiba K, Kaye AH: Transformation of astrocytes in transgenic mice expressing SV40 T antigen under the transcriptional control of the glial fibrillary acidic protein promoter. Cancer Res 55: 4302–4310, 1995

    Google Scholar 

  26. Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A: Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14: 2005–2013, 1997

    Google Scholar 

  27. Maddalena AS, Hainfellner JA, Hegi ME, Glatzel M, Aguzzi A: No complementation between TP53 or RB-1 and v-src in astrocytomas of GFAP-v-src transgenic mice. Brain Pathol 9: 627–637, 1999

    Google Scholar 

  28. Theurillat JP, Hainfellner J, Maddalena A, Weissenberger J, Aguzzi A: Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Am J Pathol 154: 581–590, 1999

    Google Scholar 

  29. Guha A, Feldkamp MM, Lau N, Boss G, Pawson A: Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene, 15: 2755–2765, 1997

    Google Scholar 

  30. Ding H, Wu X, Roncari L, Lau N, Shannon P, Nagy A, Guha A: Expression and regulation of neuropilin-1 in human astrocytomas. Int J Cancer 88: 584–592, 2000

    Google Scholar 

  31. Ding H, Roncari L, Wu X, Lau N, Shannon P, Nagy A, Guha A: Expression and hypoxia regulation of angiopoietins in human astrocytomas. Neuro-Oncology 1: 1–10, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Guha, A. Mouse Astrocytoma Models: Embryonic Stem Cell Mediated Transgenesis. J Neurooncol 53, 289–296 (2001). https://doi.org/10.1023/A:1012256230365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012256230365

Navigation