Skip to main content
Log in

Intracellular Phosphorylation of Zidovudine (ZDV) and Other Nucleoside Reverse Transcriptase Inhibitors (RTI) Used for Human Immunodeficiency Virus (HIV) Infection

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Dramatic reductions of viral load and increased survival have been achieved in patients infected with the Human Immunodeficiency Virus (HIV) with the introduction of combination antiretroviral therapy. Currently 11 agents including nucleoside reverse transcriptase inhibitors (RTI), non-nucleoside RTI and protease inhibitors are available for the use for treatment of HIV infection. Recent studies have demonstrated that certain combinations of these drugs are advantageous over their individual use as monotherapy with an even more sustained viral suppression. Much emphasis has therefore been put on studies evaluating the interactions of these different compounds. Especially the intracellular metabolism of nucleoside RTI has been evaluated to some extent, by both in vitro and in vivo studies. These compounds need to undergo phosphorylation to their active 5′-triphoshates involving several enzymatic steps and the nucleoside concentration in the plasma may not correlate with intracellular concentrations of active drug. It is therefore of great importance to study these drugs at an intracellular level in order to evaluate their efficacy. This review summarizes the intracellular phosphorylation of Zidovudine and other nucleoside analogs investigated by in vitro experiments and the efforts of measuring the active anabolites in vivo in cells isolated from HIV infected patients on nucleoside therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Barre-Sinoussi, J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vezinet-Brun, C. Rouzioux, W. Rozenbaum, and L. Montagnier. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868-71 (1983).

    Google Scholar 

  2. R. C. Gallo, P. S. Sarin, E. P. Gelmann, M. Robert-Guroff, E. Richardson, V. S. Kalyanaraman, D. Mann, G. D. Sidhu, R. E. Stahl, S. Zolla-Pazner, J. Leibowitch, and M. Popovic. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220:865-7 (1983).

    Google Scholar 

  3. J. A. Levy, A. D. Hoffman, S. M. Kramer, J. A. Landis, J. M. Shimabukuro, and L. S. Oshiro. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225:840-2 (1984).

    Google Scholar 

  4. D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123-6 (1995).

    Google Scholar 

  5. X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak, B. H. Hahn, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117-22 (1995).

    Google Scholar 

  6. M. Piatak, Jr., M. S. Saag, L. C. Yang, S. J. Clark, J. C. Kappes, K. C. Luk, B. H. Hahn, G. M. Shaw, and J. D. Lifson. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259:1749-54 (1993).

    Google Scholar 

  7. J. Embretson, M. Zupancic, J. L. Ribas, A. Burke, P. Racz, K. Tenner-Racz, and A. T. Haase. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359-62 (1993).

    Google Scholar 

  8. G. Pantaleo, C. Graziosi, J. F. Demarest, L. Butini, M. Montroni, C. H. Fox, J. M. Orenstein, D. P. Kotler, and A. S. Fauci. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355-8 (1993).

    Google Scholar 

  9. D. A. Katzenstein. Antiretroviral therapy for human immunodeficiency virus infection in 1997. West J. Med. 166:319-25 (1997).

    Google Scholar 

  10. J. Balzarini. Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives. Pharm. World Sci. 16:113-26 (1994).

    Google Scholar 

  11. P. A. Furman, J. A. Fyfe, M. H. St Clair, K. Weinhold, J. L. Rideout, G. A. Freeman, S. N. Lehrman, D. P. Bolognesi, S. Broder, H. Mitsuya, et al. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl. Acad. Sci. USA 83:8333-7 (1986).

    Google Scholar 

  12. Y. Tornevik, B. Jacobsson, S. Britton, and S. Eriksson. Intracellular metabolism of 3′-azidothymidine in isolated human peripheral blood mononuclear cells. AIDS Res. Hum. Retroviruses 7:751-9 (1991).

    Google Scholar 

  13. M. N. Dudley. Clinical pharmacokinetics of nucleoside antiretroviral agents. J. Infect. Dis. 171:S99-112 (1995).

    Google Scholar 

  14. T. P. Zimmerman, W. B. Mahony, and K. L. Prus. 3′-azido-3′-deoxythymidine. An unusual nucleoside analogue that permeates the membrane of human erythrocytes and lymphocytes by nonfacilitated diffusion. J. Biol. Chem. 262:5748-54 (1987).

    Google Scholar 

  15. H. T. Ho and M. J. Hitchcock. Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob. Agents Chemother. 33:844-9 (1989).

    Google Scholar 

  16. P. Hoggard, S. Khoo, M. Barry, and D. Back. Intracellular metabolism of zidovudine and stavudine in combination. J. Infect. Dis. 174:671-2 (1996).

    Google Scholar 

  17. D. A. Cooney, M. Dalal, H. Mitsuya, J. B. McMahon, M. Nadkarni, J. Balzarini, S. Broder, and D. G. Johns. Initial studies on the cellular pharmacology of 2′,3-dideoxycytidine, an inhibitor of HTLV-III infectivity. Biochem. Pharmacol. 35:2065-8 (1986).

    Google Scholar 

  18. N. Cammack, P. Rouse, C. L. Marr, P. J. Reid, R. E. Boehme, J. A. Coates, C. R. Penn, and J. M. Cameron. Cellular metabolism of (−) enantiomeric 2′-deoxy-3′-thiacytidine. Biochem. Pharmacol. 43:2059-64 (1992).

    Google Scholar 

  19. G. J. Veal, P. G. Hoggard, M. G. Barry, S. Khoo, and D. J. Back. Interaction between lamivudine (3TC) and other nucleoside analogues for intracellular phosphorylation. AIDS 10:546-8 (1996).

    Google Scholar 

  20. G. Ahluwalia, D. A. Cooney, H. Mitsuya, A. Fridland, K. P. Flora, Z. Hao, M. Dalal, S. Broder, and D. G. Johns. Initial studies on the cellular pharmacology of 2′,3′-dideoxyinosine, an inhibitor of HIV infectivity. Biochem. Pharmacol. 36:3797-800 (1987).

    Google Scholar 

  21. M. A. Johnson and A. Fridland. Phosphorylation of 2′,3′-dideoxyinosine by cytosolic 5′-nucleotidase of human lymphoid cells. Mol. Pharmacol. 36:291-5 (1989).

    Google Scholar 

  22. J. F. Nave, A. Eschbach, D. Wolff-Kugel, S. Halazy, and J. Balzarini. Enzymatic phosphorylation and pyrophosphorylation of 2′,3′-dideoxyadenosine-5′-monophosphate, a key metabolite in the pathway for activation of the anti-HIV (human immunodeficiency virus) agent 2′,3′-dideoxyinosine. Biochem. Pharmacol. 48:1105-12 (1994).

    Google Scholar 

  23. W. Y. Gao, T. Shirasaka, D. G. Johns, S. Broder, and H. Mitsuya. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J. Clin. Invest. 91:2326-33 (1993).

    Google Scholar 

  24. W. Y. Gao, R. Agbaria, J. S. Driscoll, and H. Mitsuya. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2′,3′-dideoxynucleoside analogs in resting and activated human cells. J. Biol. Chem. 269:12633-8 (1994).

    Google Scholar 

  25. A. J. Watson and L. M. Wilburn. Inhibition of HIV infection of resting peripheral blood lymphocytes by nucleosides. AIDS Res. Hum. Retroviruses. 8:1221-7 (1992).

    Google Scholar 

  26. W. Y. Gao, D. G. Johns, and H. Mitsuya. Anti-human immunodeficiency virus type 1 activity of hydroxyurea in combination with 2′,3′-dideoxynucleosides. Mol. Pharmacol. 46:767-72 (1994).

    Google Scholar 

  27. F. Lori, A. Malykh, A. Cara, D. Sun, J. N. Weinstein J. Lisziewicz, and R. C. Gallo. Hydroxyurea as an inhibitor of Human immunodeficiency virus-type 1 replication. Science 266:801-5 (1994).

    Google Scholar 

  28. Z. Hao, D. A. Cooney, N. R. Hartman, C. F. Perno, A. Fridland, A. L. DeVico, M. G. Sarngadharan, S. Broder, and D. G. Johns. Factors determining the activity of 2′,3′-dideoxynucleosides in suppressing human immunodeficiency virus in vitro. Mol. Pharmacol. 34:431-5 (1988).

    Google Scholar 

  29. Z. Hao, D. A. Cooney, D. Farquhar, C. F. Perno, K. Zhang, R. Masood, Y. Wilson, N. R. Hartman, J. Balzarini, and D. G. Johns. Potent DNA chain termination activity and selective inhibition of human immunodeficiency virus reverse transcriptase by 2′,3′-dideoxyuridine-5′-triphosphate. Mol. Pharmacol. 37:157-63 (1990).

    Google Scholar 

  30. M. I. Bukrinsky, T. L. Stanwick, M. P. Dempsey, and M. Stevenson. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254:423-7 (1991).

    Google Scholar 

  31. J. A. Zack, S. J. Arrigo, S. R. Weitsman, A. S. Go, A. Haislip, and I. S. Chen. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213-22 (1990).

    Google Scholar 

  32. J. A. Zack, A. M. Haislip, P. Krogstad, and I. S. Chen. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J. Virol. 66:1717-25 (1992).

    Google Scholar 

  33. T. Toyoshima, S. Kimura, S. Muramatsu, H. Takahagi, and K. Shimada. A sensitive nonisotopic method for the determination of intracellular azidothymidine 5′-mono-, 5′-di-, and 5′-triphosphate. Anal. Biochem. 196:302-7 (1991).

    Google Scholar 

  34. H. Kuster, M. Vogt, B. Joos, V. Nadai, and R. Luthy. A method for the quantification of intracellular zidovudine nucleotides. J. Infect Dis. 164:773-6 (1991).

    Google Scholar 

  35. B. N. Stretcher, A. J. Pesce, B. A. Geisler, and W. H. Vine. A coupled HPLC/radioimmunoassay for analysis of zidovudine metabolites in mononuclear cells. J. Liq. Chromatog. 14:2261-2272 (1991).

    Google Scholar 

  36. J. T. Slusher, S. K. Kuwahara, F. M. Hamzeh, L. D. Lewis, D. M. Kornhauser, and P. S. Lietman. Intracellular zidovudine (ZDV) and ZDV phosphates as measured by a validated combined high-pressure liquid chromatography-radioimmunoassay procedure. Antimicrob. Agents Chemother. 36:2473-7 (1992).

    Google Scholar 

  37. K. Peter, J. P. Lalezari, and J. G. Gambertoglio. Quantification of zidovudine and individual zidovudine phosphates in peripheral blood mononuclear cells by a combined isocratic high performance liquid chromatography radioimmunoassay method. J. Pharm. Biomed. Anal. 14:491-9 (1996).

    Google Scholar 

  38. B. N. Stretcher, A. J. Pesce, P. T. Frame and D. S. Stein. Pharmacokinetics of zidovudine phosphorylation in peripheral blood mononuclear cells from patients infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 38:1541-7 (1994).

    Google Scholar 

  39. B. L. Robbins, J. Rodman, C. McDonald, R. V. Srinivas, P. M. Flynn, and A. Fridland. Enzymatic assay for measurement of zidovudine triphosphate in peripheral blood mononuclear cells. Antimicrob. Agents Chemother. 38:115-21 (1994).

    Google Scholar 

  40. E. G. Bridges, A. Faraj, and J. P. Sommadossi. Inhibition of mammalian DNA polymerase-associated 3′ to 5′ exonuclease activity by 5′-monophosphates of 3′-azido-3′-deoxythymidine and 3′-amino-3′-deoxythymidine. Biochem. Pharmacol. 45:1571-6 (1993).

    Google Scholar 

  41. Y. Tornevik, B. Ullman, J. Balzarini, B. Wahren, and S. Eriksson. Cytotoxicity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas anti-human immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem. Pharmacol. 49:829-37 (1995).

    Google Scholar 

  42. B. L. Robbins, B. H. Waibel, and A. Fridland. Quantitation of intracellular zidovudine phosphates by use of combined cartridge-radioimmunoassay methodology. Antimicrob. Agents Chemother. 40:2651-4 (1996).

    Google Scholar 

  43. M. Barry, M. Wild, G. Veal, D. Back, A. Breckenridge, R. Fox, N. Beeching, F. Nye, P. Carey, and D. Timmins. Zidovudine phosphorylation in HIV-infected patients and seronegative volunteers. AIDS 8:F1-5 (1994).

    Google Scholar 

  44. K. Peter and J. G. Gambertoglio. Zidovudine phosphorylation after short-term and long-term therapy with zidovudine in patients infected with the human immunodeficiency virus. Clin. Pharmacol. Ther. 60:168-76 (1996).

    Google Scholar 

  45. M. G. Barry, S. H. Khoo, G. J. Veal, P. G. Hoggard, S. E. Gibbons, E. G. Wilkins, O. Williams, A. M. Breckenridge, and D. J. Back. The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS 10:1361-7 (1996).

    Google Scholar 

  46. V. I. Avramis, R. Kwock, M. M. Solorzano, and E. Gomperts. Evidence of in vitro development of drug resistance to azidothymidine in T-lymphocytic leukemia cell lines (Jurkat E6-1/AZT-100) and in pediatric patients with HIV-1 infection. J. Acquir. Immune Defic. Syndr. 6:1287-96 (1993).

    Google Scholar 

  47. S. Gollapudi and S. Gupta. Human immunodeficiency virus I-induced expression of P-glycoprotein. Biochem. Biophys. Res. Commun. 171:1002-7 (1990).

    Google Scholar 

  48. S. Gupta and S. Gollapudi. P-glycoprotein (MDR 1 gene product) in cells of the immune system: its possible physiologic role and alteration in aging and human immunodeficiency virus-1 (HIV-1) infection. J. Clin. Immunol. 13:289-301 (1993).

    Google Scholar 

  49. G. Antonelli, O. Turriziani, M. Cianfriglia, E. Riva, G. Dong, A. Fattorossi and F. Dianzani. Resistance of HIV-1 to AZT might also involve the cellular expression of multidrug resistance P-glycoprotein. AIDS Res. Hum. Retroviruses. 8:1839-44 (1992).

    Google Scholar 

  50. S. Wu, X. Liu, M. M. Solorzano, R. Kwock, and V. I. Avramis. Development of zidovudine (AZT) resistance in Jurkat T cells is associated with decreased expression of the thymidine kinase (TK) gene and hypermethylation of the 5′ end of human TK gene. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol 8:1-9 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, K., Gambertoglio, J.G. Intracellular Phosphorylation of Zidovudine (ZDV) and Other Nucleoside Reverse Transcriptase Inhibitors (RTI) Used for Human Immunodeficiency Virus (HIV) Infection. Pharm Res 15, 819–825 (1998). https://doi.org/10.1023/A:1011956011207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011956011207

Navigation