Skip to main content
Log in

Light-harvesting adaptations of planktonic phototrophic micro-organisms to different light quality conditions

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of light spectral distribution on the composition of phototrophic microbial communities were analyzed in three metalimnetic levels (relative depth positions) of 41 lakes. Principal Component Analysis was used to compare light quality conditions reaching the populations of phototrophic micro-organisms containing different photosynthetic pigments. Results allowed to identify the optimal light quality conditions for the selection of each microbial group at their respective levels. Two general light-harvesting adaptations were defined, according to the wavebands that could be related to the selection of these microbial groups. The micro-organisms adapted to use red and near-infrared light – eukaryotic phytoplankton, Chloronema spp. and green-coloured Chlorobiaceae – predominated at shallow depths (specially in waters containing high gilvin contents) using their respective Qy absorption bands. The micro-organisms adapted to green-yellow light – phycoerythrin-containing cyanobacteria, Chromatiaceae and brown-coloured Chlorobiaceae – were dominant in deep metalimnetic communities. Laboratory experiments with cultures of Chlorobium limicola and C. phaeobacteroides growing under different light quality conditions showed that the green-coloured species had higher photosynthetic activity under red light, while the brown-coloured species was more active under green light. These results demonstrated that physiological differences between micro-organisms with different light-harvesting adaptations are responsible of their selection under different light quality conditions. This selection is experimented by Chlorobiaceae (as it was previously indicated by other investigators) at the deepest positions of the metalimnetic communities (level 3), but also by Chromatiaceae and Chloronema spp. at level 2 and by the eukaryotic phytoplankton and cyanobacteria at level 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abella, C. A. & L. J. Garcia-Gil, 1988. Diel migration as a mechanism for enrichment of natural populations of branching species of Pelodictyon. In Olson J.M., J. G. Ormerod, J. Amesz, G. Stackebrandt & H. G. Trüper (eds), Green Photosynthetic Bacteria. Plenum Press: 269–285.

  • Abella, C. A. & L. J. Garcia-Gil, 1992. Microbial ecology of planktonic filamentous phototrophic bacteria in holomictic freshwater lakes. In Ilmavirta, V. & R. I. Jones (eds), The Dynamics and Use of Lacustrine Ecosystems. Kluwer Academic Publishers, Dordrecht: 79–86.

    Google Scholar 

  • Abella, C. A., E. Montesinos & J. Turet, 1985. Colonization and dynamics of phototrophic bacteria in a recently formed lagoon in Banyoles karstic area (Girona, Spain). Scientia gerundensis 10: 33–51.

    Google Scholar 

  • Abella, C. A., E. Montesinos & R. Guerrero, 1980. Field studies on the competition between purple and green sulfur bacteria for available light (lake Siso, Spain). In Dokulil, M., H. Metz & D. Jewson (eds), Shallow Lakes. Contribution to Their Limnology. Dr W. Junk Publishers, The Hague: 173–181.

    Google Scholar 

  • Borrego, C. M. & L. J. Garcia-Gil, 1994a. Caracterización limnológica de la Coromina, una laguna hipereutrófica del sistema lacustre de Banyoles. Limnética 10: 43–51.

    Google Scholar 

  • Borrego, C. M. & L. J. Garcia-Gil, 1994b. Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. hotosyn. Res. 41: 157–163.

    Google Scholar 

  • Borrego, C. M., L. J. Garcia-Gil, L. Bañeras & R.C. Brunet, 1993. Changes in the composition of phototrophic sulphur bacterial communities in three basins of Lake Banyoles (Spain). Verh. int. Ver. Limnol. 25: 720–725.

    Google Scholar 

  • Caldwell, D. E. & J. M. Tiedje, 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol. 21: 377–385.

    Google Scholar 

  • Callieri, C., E. Amicucci, R. Bertoni & L. Vörös, 1996. Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. Int. Rev. ges. Hydrobiol. 81: 13–23.

    Google Scholar 

  • Cohen, Y., W. E. Krumbein & M. Shilo, 1977. Solar Lake (Sinai). 3. Bacterial distribution and production. Limnol. Oceanogr. 22: 621–634.

    Google Scholar 

  • Cox, R. P., M. Miller, J. Aschenbrücker, Y. Z. Ma & T. Gillbro, 1998. The role of bacteriochlorophyll e and carotenoids in light harvesting in brown-colored Green Sulfur Bacteria. In Garab, G. (ed.), Photosynthesis: Mechanisms and Effects. Kluwer Academic Publishers, Dordrecht: 149–152.

    Google Scholar 

  • Eichler, B. & N. Pfennig, 1990. Seasonal development of anoxygenic phototrophic bacteria in a holomictic drumlin lake (Schleinsee, F.R.G.). Arch. Hydrobiol. 119: 369–392.

    Google Scholar 

  • Findenegg, I., 1935. Limnologische Untersuchungen im Kärntner Seengebiete. Int. Rev. Hydrobiol. 32: 369–423.

    Google Scholar 

  • Garcia-Gil, L. J. & C. A. Abella, 1992. Population dynamics of phototrophic bacteria in three basins of Lake Banyoles (Spain). In Ilmavirta, V. & R. I. Jones (eds), The Dynamics and Use of Lacustrine Ecosystems. Kluwer Academic Publishers, Dordrecht: 87–94.

    Google Scholar 

  • Glover, H. E., M. D. Keller & R. R. L. Guillard, 1986. Light quality and oceanic ultraphytoplankters. Nature 319: 142–143.

    Google Scholar 

  • Guerrero, R., C. Pedrós-Alió, I. Esteve & J. Mas, 1987. Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. In Lindholm, T. (ed.), Ecology of Photosynthetic Prokaryotes with Special Reference to Meromictic Lakes and Coastal Lagoons. Åbo Academic Press, Åbo: 125–151.

    Google Scholar 

  • Guerrero, R., E. Montesinos, I. Esteve & C. A. Abella, 1980. Physiological adaptation and growth of purple and green sulfur bacteria in a meromictic lake (Vila) as compared to a holomictic lake (Siso). In Dokulil, M., H. Metz & D. Jewson (eds), Shallow lakes. Contribution to their Limnology. Dr W. Junk Publishers, The Hague: 161–192.

    Google Scholar 

  • Hauschild, C. A., H. J. G. McMurter & F. R. Pick, 1991. Effect of spectral quality on growth and pigmentation of picocyanobacteria. J. Phycol. 27: 698–702.

    Google Scholar 

  • Herbert, R. A.& A. C. Tanner, 1977. The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sediments. J. appl. Bacteriol. 43:437–445.

    Google Scholar 

  • Hurley, J. P. & P. J. Garrison, 1993. Composition and sedimentation of aquatic pigments associated with deep plankton in lakes. Can. J. Fish. aquat. Sci. 50: 2713–2722.

    Google Scholar 

  • Hurley, J. P., D. E. Armstrong, T. Asplund, P. J. Garrison, G. H. Lauster & M. M. Shafer, 1995. Deep production in lakes: effects on nutrient transport, trace metal cycling and paleolimnology. Final Technical Report. Wisconsin Department of Natural Resources and University of Wisconsin, Madison.

    Google Scholar 

  • Jørgensen, B. B., J.G. Kuenen & Y. Cohen, 1979. Microbial transformations of sulfur compounds in a stratified lake (Solar lake, Sinai). Limnol. Oceanogr. 24: 799–822.

    Google Scholar 

  • Kirk, J. T. O., 1976. Yellow substance (gelbstoff) and its contribution to the attenuation of Photosynthetically Active Radiation in some inland and coastal south-eastern australian waters. Aust. J. mar. Freshwater Res. 27: 61–71.

    Google Scholar 

  • Kirk, J. T. O., 1977. Attenuation of light in natural waters. Aust. J. mar. Freshwat. Res. 28: 497–508.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kohler, H. P., B. Ahring, C. Abella, K. Ingvorsen, H. Keweloh, E. Laczkù, E. Stupperich & F. Tomei, 1984. Bacteriological studies on the sulfur cycle in the anaerobic part of the hypolimnion and in the surface sediments of Rotsee in Switzerland. FEMS Microb. Lett. 21: 279–286.

    Google Scholar 

  • Kusel-Fetzmann, E., 1973. Einige Algenbiocönosen im Längsee. Carinthia II 163/83: 344–348.

    Google Scholar 

  • Lindholm, T. & K. Weppling, 1987. Blooms of phototrophic bacteria and phytoplankton in a small brackish lake on Åland, SW Finland. In Lindholm, T. (ed.), Ecology of Photosynthetic Prokaryotes with Special Reference to Meromictic Lakes and Coastal Lagoons. Åbo Academic Press, Åbo: 45–53.

    Google Scholar 

  • Lowry, O. H., N. H. Rosebrough, A. L. Farr & R. J. Randall, 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Martínez-Taberner, A., G. Moyà & G. Ramón, 1987. Caracterización limnológica preliminar de la Albufera de AlcÚdia (Mallorca). Composición química del agua y distribución de los macrófitos. Limnética 3: 55–61.

    Google Scholar 

  • Matheron, R. & R. Baulaigue, 1977. Influence de la pénétration de la lumière solaire sur le développement des bactéries phototrophes sulfureuses dans les environements marins. Can. J. Microbiol. 23: 267–270.

    Google Scholar 

  • Montesinos, E., C. A. Abella, R. Guerrero & I. Esteve, 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Apl. envir. Microbiol. 46: 1007–1016.

    Google Scholar 

  • Moyà, G., G. Ramón, A. Martínez-Taberner, V. Forteza, C. Picó, C. Ponsell, C. Rosselló & M. A. Soberats, 1987. Limnology of a meromictic coastal lagoon. L'estany del Cibollar (Majorca, Balearic Islands). Limnética 3: 255–262.

    Google Scholar 

  • Otte, S. C. M., E. J. Van De Meent, P.A. Van Veelen, A.S. Pundsnes & J. Amesz, 1993. Identification of the major chlorosomal bacteriochlorophylls of the green sulfur bacteriaChlorobium vibrioforme andChlorobium phaeovibrioides; their function in lateral energy transfer. Photosyn. Res. 35: 159–169.

    Google Scholar 

  • Overmann, J. & M. Tilzer, 1989. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake, Mittlerer Buchensee, West Germany. Aquat. Sci. 51: 262–278.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1980a. Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1980b. The effects of light quality on the growth of phototrophic bacteria in lakes. Arch. Microb. 125: 19–27.

    Google Scholar 

  • Pedrós-Alió, C. & R. Guerrero, 1993. Microbial ecology in Lake Cisó. Adv. Mic. Ecol. 13: 155–209.

    Google Scholar 

  • Pedrós-Alió, C., J. M. Gasol & R. Guerrero, 1986. Microbial ecology of sulfurous lake Cisó. In Megusar, F. & M. Gantar (eds), Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana: 638–643.

    Google Scholar 

  • Pfennig, N. & H. G. Trüper, 1991. The family Chromatiacea. In Balows, A., H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer (eds), The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag, IV: 3200–3221.

  • Pfennig, N., 1967. Photosynthetic bacteria. Ann. Rev. Microb. 21: 464–480.

    Google Scholar 

  • Pfennig, N., 1989. Ecology of phototrophic purple and green sulfur bacteria. In Schlegel, H. G. & B. Bowien (eds), Autotrophic Bacteria. Science Tech. Publ., Madison (WI): 97–116.

    Google Scholar 

  • Pick, F. R., 1991. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36: 1457–1462.

    Google Scholar 

  • Pierson, B. K. & J. M. Olson, 1989. Evolution of photosynthesis in anoxygenic photosynthetic prokaryotes. In Cohen, Y. & E. Rosenberg (eds), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology: 402–427.

  • Pierson, B. K., V. M. Sands & J. L. Frederick, 1990. Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Apl. envir. Microbiol. 56: 2327–2340.

    Google Scholar 

  • Planas, M. D., 1973. Composición, ciclo y productividad del fitoplancton en el lago de Banyoles. Oecol. Aquat. 1: 3–106.

    Google Scholar 

  • Ruttner, F., 1937. Limnologische Studien an einigen Seen der Ostalpen. Arch. Hydrobiol. 32: 167–319. SPSS, 1988. SPSS-X advanced statistics guide. SPSS Inc, Chicago.

    Google Scholar 

  • Trüper, H. G. & H. G. Schlegel, 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Ant. van Leeuw. 30: 225–238.

    Google Scholar 

  • Trüper, H. G. & N. Pfennig, 1991. The family Chlorobiaceae. In Balows, A., H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer (eds), The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag, IV: 3583–3592.

  • Trüper, H. G. & S. Genovese, 1968. Characterization of photosynthetic sulfur bacteria causing red water in lake Faro (Messina, Sicily). Limnol. Oceanogr. 13: 225–232.

    Google Scholar 

  • Van Gemerden, H., 1986. Production of elemental sulfur by green and purple sulfur bacteria. Arch. Microb. 146: 52–56.

    Google Scholar 

  • Vetter, H., 1937. Limnologische Untersuchungen über das Phytoplankton und seine Beziehungen zur Ernährung des Zooplanktons im Schleinsee bei Langenargen am Bodensee. Int. Rev. ges. Hydrobiol. Hydrogr. 34: 499–561.

    Google Scholar 

  • Vicente, E. & M. R. Miracle, 1988. Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Verh. int. Ver. Theor. Angew. Limnol. 23: 522–529.

    Google Scholar 

  • Vila, X. & C. A. Abella, 1993. Comparison of light spectral distribution in some waterbodies of Banyoles area (Girona, Spain). Verh. int. Ver. Limnol. 25: 100–104.

    Google Scholar 

  • Vila, X. & C. A. Abella, 1994. Effects of light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes. Photosyn. Res. 41: 53–65.

    Google Scholar 

  • Vila, X., C. A. Abella, J. B. Figueras & J. P. Hurley, 1998. Vertical models of phototrophic bacterial distribution in the metalimnetic microbial communities of several freshwater North American kettle lakes. FEMS Microb. Ecol. 25: 287–299.

    Google Scholar 

  • Vila, X., M. Dokulil, L. J. Garcia-Gil, C. A. Abella, C. M. Borrego & L. Bañeras, 1996. Composition and distribution of phototrophic bacterioplankton in the deep communities of several central European lakes: The role of light quality. Arch. Hydrobiol. 48: 183–196.

    Google Scholar 

  • Vila, X., X. P. Cristina, C. A. Abella & J. P. Hurley, 1999. Effects of gilvin on the composition and dynamics of metalimnetic communities of phototrophic bacteria in freshwater North American lakes. J. appl. Microb. 85: 138–150.

    Google Scholar 

  • Vörös, L., C. Callieri, K. V. Balogh & R. Bertoni, 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369/370: 117–125.

    Google Scholar 

  • Waterbury, J. B. S., S. W. Watson, F. W. Valois & D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. aquat. Sci. 214: 71–120.

    Google Scholar 

  • Watras, C. J.& A. L. Baker, 1988. The spectral distribution of downwelling light in northern Wisconsin lakes. Arch. Hydrobiol. 112: 481–494.

    Google Scholar 

  • Weimer, W. C. & G. F. Lee, 1973. Some considerations of the chemical limnology of meromictic lake Mary. Limnol. Oceanogr. 18:414–425.

    Google Scholar 

  • Wyman, M. & P. Fay, 1987. Acclimation to the natural light climate. In Fay, P. & C. Van Baalen (eds), The Cyanobacteria. Elsevier, Amsterdam: 347–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vila, X., Abella, C.A. Light-harvesting adaptations of planktonic phototrophic micro-organisms to different light quality conditions. Hydrobiologia 452, 15–30 (2001). https://doi.org/10.1023/A:1011909330390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011909330390

Navigation