Skip to main content
Log in

New strategies for the treatment of Parkinson's disease hold considerable promise for the future management of neurodegenerative disorders

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are often consideredincurable with no efficient therapies to modifyor halt the progress of disease, and ultimatelylead to reduced quality of life and to death.Our knowledge of the nervous system in healthand disease has, however, increasedconsiderably during the last fifty years andtoday, neuroscience reveals promising newstrategies to deal with disorders of thenervous system.Some of these results have been implementedwith success in the treatment of Parkinson'sdisease, a common neurodegenerative illnessaffecting approximately 1% of the populationaged seventy or more. Parkinson's disease ischaracterized by a massive loss of dopaminergicneurons in the substantia nigra, leading tosevere functional disturbance of the neuronalcircuitry in the basal ganglia. A thoroughdescription of basal ganglia circuitry inhealth and disease is presented. We describehow the functional disturbances seen inParkinson's disease may be corrected atspecific sites in this circuitry by medicaltreatment or, in advanced stages of Parkinson'sdisease, by neurosurgical methods. The latterinclude lesional surgery, neuraltransplantation and deep brain stimulation,together with future treatment strategies usingdirect or indirect implantation of geneticallymodified cell-lines capable of secretingneurotrophic factors or neurotransmitters.Advantages and disadvantages are brieflymentioned for each strategy and theimplications for the future and the possibleuse of these interventions in otherneurodegenerative diseases are discussed, withspecial emphasis on deep brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin RL, Young AB and Penney B (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    PubMed  Google Scholar 

  • Alexander GE (1994) Basal ganglia-Thalamocortical circuits: Their role in control of movements. J Clin Neurophysiol 11: 420–431

    PubMed  Google Scholar 

  • Alexander GE and Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271

    PubMed  Google Scholar 

  • Ballard PA, Tetrud JW and Langston JW (1985) Permanent human parkinsonism due to MPTP. Neurology 35: 949–956

    PubMed  Google Scholar 

  • Baron MS, Vitek JL, Bakey RA, Green J, Kaneoke Y, Hashimoto T, Turner RS, Woodard JL, Cole SA, McDonald WM and DeLong MR (1996) Treatment of advanced Parkinson's disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol 40: 355–366

    PubMed  Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S and de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson's disease. Appl Neurophysiol 50: 344–346

    PubMed  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE and de Rougemont J (1991) Long-term suppression of tremor, by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406

    PubMed  Google Scholar 

  • Benabid AL, Pollak P, Gao D, Hoffman D, Limousin P, Gay E, Payen I and Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214

    PubMed  Google Scholar 

  • Bergman H, Wichmann T and DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438

    PubMed  Google Scholar 

  • Bernheimer H, Birkmeyer W, Hornykiewicz O, Jellinger K and Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455

    PubMed  Google Scholar 

  • Bertler A and Rosengren E (1959) Occurence and distribution of catecholamines in brain. Acta Physiologica Scandinavica 47: 350–361

    PubMed  Google Scholar 

  • Birkmayer W and Hornykiewicz O (1961) Der L-3,4-Dioxyphenylalanin (= DOPA)-Effekt bei der Parkinson-Akinesie. Wien Klin Wochenschr 73: 786–786

    Google Scholar 

  • Björklund A and Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177: 555–560

    PubMed  Google Scholar 

  • Blond S, Caparros-Lefebvre D, Parker F, Assaker R, Petit H, Guieu JD and Christiaens JL (1992) Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. J Neurosurg 77: 62–68

    PubMed  Google Scholar 

  • Boer GJ (1994) Ethical guidelines for the use of human embryonic or fetal tissue for experimental and clinical neurotransplantation and research. J Neurol 242: 1–13

    PubMed  Google Scholar 

  • Bonifati V, Fabrizio E, Vanacore N, De Mari M and Meco G (1995) Familial Parkinson's disease: a clinical genetic analysis. Can J Neurol Sci 22: 272–279

    PubMed  Google Scholar 

  • Bredberg E, Tedroff J, Aquilonius S-M and Paalzow L (1990) Pharmacokinetics and effects of levodopa in advanced Parkinson's disease. Eur J Clin Pharmacol 39: 385–389

    PubMed  Google Scholar 

  • Bredberg E, Nilsson D, Johansson K, Aquilonius S-M, Johnels B, Nyström C and Paalzow L (1993) Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson's disease. Eur J Clin Pharmacol 45: 117–122

    PubMed  Google Scholar 

  • Brundin P, Strecker RE, Widner H, Clarke DJ, Nilsson OG, Astedt B, Lindvall O and Björklund A (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp Brain Res 70: 192–208

    PubMed  Google Scholar 

  • Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Oertel WH, Quinn NP, Rehncrona S and Lindvall O (2000) Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain 123: 1380–1390

    PubMed  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM and Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3,6-tetrahydropyrid ine. Proc Natl Acad Sci USA 80: 4546–4550

    PubMed  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11: 490–493

    PubMed  Google Scholar 

  • Carlsson A, Lindqvist M, Magnuson T and Waldeck B (1958) On the presence of 3-hydroxythyramin in the brain. Science 127: 471–471

    PubMed  Google Scholar 

  • Ceballos-Baumann AO, Obeso JA, Vitek JL, DeLong MR, Bakay R, Linazasoro G and Brooks DJ (1994) Restoration of thalamocortical activity after posteroventral pallidotomy in Parkinson's disease. Lancet 344: 814

    PubMed  Google Scholar 

  • Chesselet M-F and Delfs JM (1996) Basal ganglia and movement disorders: an update. Trends Neurosci 19: 417–422

    PubMed  Google Scholar 

  • Colzi A, Turner K and Lees AJ (1998) Continuous subcutaneous waking day apomorphine in the long term treatment of levodopa induced interdose dyskinesias in Parkinson's disease. J Neurol Neurosurg Psychiatry 64: 573–576

    PubMed  Google Scholar 

  • Cooper IS (1965) Surgical treatment of parkinsonism. Ann RevMed 16: 309–330

    Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM and Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1: 249–254

    PubMed  Google Scholar 

  • Deacon T, Schumacher J, Dinsmore J, Thomas C, Palmer P, Kott S, Edge A, Penney D, Kassissieh S, Dempsey P and Isacson O (1997) Histopathological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease. Nature Med 3: 350–353

    PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285

    PubMed  Google Scholar 

  • Duda JE, Lee VM and Trojanowski JQ (2000) Neuropathology of synuclein aggregates. J Neurosci Res 61: 121–127

    PubMed  Google Scholar 

  • Dunnett SB (1991) Transplantation of embryonic dopamine neurons; what we know from rats. J Neurol 238: 65–74

    PubMed  Google Scholar 

  • Dunnett SB and Annett LE (1991) Nigral transplants in primate models of parkinsonism. In: Lindvall O, Björklund A and Widner H (eds) Intracerebral Transplantation in Movement Disorders. Experimental Basis and Clinical Experiences, pp 27–51. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Duvoisin RC (1999) Genetic and environmental factors in Parkinson's disease In: Stern GM (ed) Parkinson's disease: Advances in Neurology, Vol 80, pp 161–163. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Duvoisin RC and Yahr MD (1965) Encephalities and Parkinsonism. Arch Neurol 12: 227

    PubMed  Google Scholar 

  • Fahn S and Cohen G (1992) The oxidant strees hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol 32: 805–812

    Google Scholar 

  • Fearnley J and Lees AJ (1997) Parkinson's disease: Neuropathology. In: Watts RL and Koller WC (eds) Movement Disorders: Neurologic Principles and Practice, pp 263–278. McGraw-Hill, New York

    Google Scholar 

  • Fisher LJ and Ray J (1994) in vivo and ex vivo gene transfer to the brain. Curr Opin Neurobiol 4: 735–741

    PubMed  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55: 259–272

    PubMed  Google Scholar 

  • Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Wells TH, Barrett JN, Grafton ST, Huang SC, Eidelberg D and Rottenberg DA (1990) Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch Neurol 47: 505–512

    PubMed  Google Scholar 

  • Freed WJ (1991) Substantia nigra grafts and Parkinson's disease: from animal experiments to human therapeutic trials. Restor Neurol Neurosci 3: 109–134

    Google Scholar 

  • Freeman W (1925) The pathology of paralysis agitans. Ann Clin Med 4: 106–116

    Google Scholar 

  • Galpern WG, Burns LH, Deacon TW, Dinsmore J and Isacson O (1996) Xeno-transplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson's disease: functional recovery and graft morphology. Exp Neurol 140: 1–13

    PubMed  Google Scholar 

  • Galvez-Jimenez N, Lozano AM, Duff J, Trèpanier L, Saint-Cyr JA and Lang AE (1996) Bilateral pallidotomy: pronounced amelioration of incapacitating levodopa-induced dyskinesias but accompanying cognetive decline. Mov Disord 11: 242

    Google Scholar 

  • Gassen M, Gross A and Youdim MBH (1998) Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-Hydroxydopamine. Mov Disord 13(2): 242–248

    PubMed  Google Scholar 

  • Gasser T (1999) Is Parkinson's disease an inherited condition? In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 143–152. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Ann Rev Neurosci 15: 285–320

    PubMed  Google Scholar 

  • Ghika J, Favre J, Frankhauser H and Regli F (1996) Neurological and neuropsychological complications of bilateral contemporanous pallidotomy in Parkinson's disease. Neurology 46: A417

    Google Scholar 

  • Golbe LI, Miller D and Duvoisin RC (1990) Autosomal dominant Lewy-body Parkinson's disease. In: Strefler MR, Korczyn AD, Melamed E and Youdoim MGH (eds) Parkinson's Disease: Anatomy, Pathology, and Therapy. Advances in Neurology, Vol 53, pp 287–292. Raven Press, New York

    Google Scholar 

  • Greenfield JG and Bosanquet FD (1953) The brain-stem lesions in parkinsonism. J Neurol Neurosurg Psychiatry 16: 213–226

    Google Scholar 

  • Gross C, Rougier A, Guehl D, Boraud T, Julien J and Bioulac B (1997) High-frequency stimulation of the globus pallidus internalis in Parkinson's disease: a study of seven cases. J Neurosurg 87: 491–498

    PubMed  Google Scholar 

  • Grünblatt E, Mandel S, Berkuzki T and Youdim MBH (1999) Apomorphine protects against MPTP-Induced neurotoxicity in mice. Mov Disord 14(4): 612–618

    PubMed  Google Scholar 

  • Halloway R and the Parkinson study group (2000) Pramipexole versus levodopa in early Parkinson's disease: a randomized clinical trial. Neurology 54(3): S19. 003

    Google Scholar 

  • Hariz MI (1999) Current controversies in pallidal surgery. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 593–602. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R and Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol 37: 714–722

    PubMed  Google Scholar 

  • Harder S, Baas H and Rietbrock S (1995) Concentration-effect relationship of levodopa in patients with Parkinson's disease. Clin Pharmacokinet 29: 243–256

    PubMed  Google Scholar 

  • Henderson BTH, Clough CG, Hughes RC et al. (1991) Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson's disease. Arch Neurol 48: 822–827

    PubMed  Google Scholar 

  • Hirai T, Ryu H, Nagaseki Y, Gaur MS, Fujii M and Takizawa T (1999) Image-guided electrophysiologically controlled posteroventral pallidotomy for the treatment of Parkinson's disease: A 28-case analysis. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 585–591. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Iacono RP, Carlson JD, Kuniyoshi SM, Li YJ, Mohamed AS and Maeda G (1997) Electrophysiological target localization in posteroventral pallidotomy. Acta Neurochir 139: 433–441

    Google Scholar 

  • Jankovic J, Lai EC, Krauss J and Grossman R (1999) Surgical Treatment of levodopa-induced dyskinesias. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 603–609. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RS, Passingham RE and Brooks DJ (1992) Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32: 749–757

    PubMed  Google Scholar 

  • Jenner P and Olanow CW 1996) Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47: 161–170

    Google Scholar 

  • Kelly PJ (1988) Contempory stereotactic ventralis lateral thalamotomy in the treatment of parkinsonian tremor and other movement disorders. In: Heilbrun MP (ed) Stereotactic Neurosurgery, Vol 2, pp 133–147. William and Wilkins, Baltimore

    Google Scholar 

  • Kelly PJ and Gillingham FJ (1980) The long-term results of stereotaxic surgery and L-dopa therapy in patients with Parkinson's disease. A 10-year follow-up study. J Neurosurg 53: 332–337

    PubMed  Google Scholar 

  • Kish SJ, Shannak HK and Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with Parkinson's disease-pathophysiologic and clinical implications. N Engl J Med 318: 876–880

    PubMed  Google Scholar 

  • Kondziolka D, Dempsey PK, Lunsford LD, Kestle JR, Dolan EJ, Kanal E and Tasker RR (1992) A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 30: 402–407

    PubMed  Google Scholar 

  • Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, Hauser RA, Smith DA, Nauert GM, Perl DP et al. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalon in a patient with Parkinson's disease. N Engl J Med 332: 1118–1124

    PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen E-Y, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Déglon N and Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290: 767–772

    PubMed  Google Scholar 

  • Kostic V, Przedborski S, Flaster E and Sternic N (1991) Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson's disease. Neurology 41: 202–205

    PubMed  Google Scholar 

  • Krack P, Pollak P, Limousin P, Hoffmann D, Benazzouz A, Le Bas JF, Koudsie A and Benabid AL (1998a) Opposite motor effect of pallidal stimulation in Parkinson's disease. Ann Neurol 43: 180–192

    PubMed  Google Scholar 

  • Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A and Benabid AL (1998b) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson's disease. Brain 121: 451–457

    PubMed  Google Scholar 

  • Laitinen LV, Bergenheim AT and Hariz MI (1992) Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg 76: 53–61

    PubMed  Google Scholar 

  • Lang AE and Lozano AM (1998) Parkinson's disease: Second of two parts. N Engl J Med 339: 1130–1143

    PubMed  Google Scholar 

  • Lang AE, Lozano A, Montgomery EB, Tasker RR and Hutchison WD (1999) Posteroventral medial Pallidotomy in advanced Parkinson's disease. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 575–583. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Langston JW (1995) MPTP as it relates to the etiology of Parkinson's disease. In: Ellenberg JH, Koller WH and Langston JW (eds) Etiology of Parkinson's Disease, pp 367–399. Marcel Dekker, New York

    Google Scholar 

  • Langston JW, Ballard P, Tetrud J and Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-Analog synthesis. Science 219: 979–980

    PubMed  Google Scholar 

  • Langston JW, Forno LS, Rebert CS and Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1, 2, 3,6-tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res 292: 390–394

    PubMed  Google Scholar 

  • Larsen JP, Boas J and Erdal J (1999) Does selegiline modify progression of early Parkinson's disease? Results from a five year study. The Norwegian-Danish Study Group. Eur J Neurol 6: 539–547

    PubMed  Google Scholar 

  • Lazzarini AM, Myers RH, Zimmerman TR Jr, Mark MH, Golbe LI, Sage JI, Johnson WG and Duvoisin RC (1994) A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology 44(31): 499–506

    PubMed  Google Scholar 

  • Lees AJ (1995) Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson's disease. BMJ 311: 1602–1607

    PubMed  Google Scholar 

  • Lilienfeld DE and Perl DP (1993) Projected neurodegenerative disease mortality in the United States, 1990–2040. Neuroepidemiology 12: 219–228

    PubMed  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffman D, Le Bas J-F, Broussolle E, Perret JE and Benabid A-L (1995) Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345: 91–95

    PubMed  Google Scholar 

  • Limousin P, Greene J, Pollak P, Rothwell J, Benanid A-L and Frackowiak R (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol 42: 283–291

    PubMed  Google Scholar 

  • Lindvall O (1994) Clinical application of neuronal grafts in Parkinson's disease. J Neurol 241: S54-S56

    Google Scholar 

  • Lindvall O (1999) Neural transplantation: can we improve the symptomatic relief? In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 635–640. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, Lindholm T, Björklund A, Leenders KL, Rothwell JC et al. (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease: a detailed account of methodology and a 6-month follow-up. Arch Neurol 46: 615–631

    PubMed  Google Scholar 

  • Lindvall O, Sawle G, Widner H, Rothwell JC, Björklund A, Brooks D, Brundin P, Frackowiak R, Marsden CD, Odin P and Rehncrona S (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Ann Neurol 35: 172–180

    PubMed  Google Scholar 

  • Lozano A, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchinson WD and Dostrovsky JO (1995) Effect of GPi pallidotomy on motor function in Parkinson's disease. Lancet 346: 1383–1387

    PubMed  Google Scholar 

  • Lozano A, Hutchison W, Kiss Z, Tasker R, Davis K and Dostrovsky J (1996) Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg 84: 194–202

    PubMed  Google Scholar 

  • Lundberg C, Horellou P, Mallet J and Björklund A (1996) Generation of DOPA-producing astrocytes by retroviral transduction of the human tyrosine hydroxylase gene: in vitro characterization and in vivo effects in the rat Parkinson model. Exp Neurol 139: 39–53

    PubMed  Google Scholar 

  • Luquin MR, Scipioni O, Vaamonde J, Gershanik O and Obeso JA (1992) Levodopa-induced dyskinesias in Parkinson's disease: clinical and pharmacological classification. Mov Disord 7: 117–124

    PubMed  Google Scholar 

  • Maraganore DM, Harding AE and Marsden CD (1991) A clinical and genetic study of familial Parkinson's disease. Mov Disord 6(3): 205–211

    PubMed  Google Scholar 

  • Martinez-Serrano A and Björklund A (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci 20: 530–538

    PubMed  Google Scholar 

  • Marsden CD (1994) Parkinson's disease. J Neurol Neurosurg Psychiatr 57: 672–681

    PubMed  Google Scholar 

  • Mendez I, Dagher A, Hong M, Hebb A, Gaudet P, Law A, Weerasinghe S, King D, Desrosiers J, Darvesh S, Acorn T and Robertson H (2000) Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line-derived neurotrophic factor in patients with Parkinson's disease. J Neurosurg 92: 863–869

    PubMed  Google Scholar 

  • Merello M, Piran Arce G, Nouzeilles M and Leiguarda R (2000) Antidyskinetic effect of long-term waking day continuous infusion of apomorphine compared to posteroventral pallidotomy. Mov Disord 15(3): 54

    Article  Google Scholar 

  • Metman LV, Del Dotto P, Lepoole K, Konitsiotis S, Fang J and Chase TN (1999) Amantadine for levodopa induced dyskinesias: a 1-year follow up study. Arch Neurol 56: 1383–1386

    Article  PubMed  Google Scholar 

  • Meyers R (1942) Surgical interruption of the pallidofugal fibers. Its effect on the syndrome of paralysis agitans and technical considerations in its application. N Y St J Med 42: 317–325

    Google Scholar 

  • Mirra SS, Schneider JA and Gearing M (1997) Neuropathology of movement disorders: an overview. In: Watts RL and Koller WC (eds) Movement Disorders: Neurologic Principles and Practice, pp 263–278. McGraw-Hill, New York

    Google Scholar 

  • Mjönes H (1949) Paralysis agitans: a clinical genetic study. Acta Psychiatr Neurol Scand 54: 1–195

    Google Scholar 

  • Mutch WJ, Dingwall-Fordyce I, Downie AW, Paterson JG and Roy SK (1986) Parkinson's disease in a Scottish city. BMJ 292: 534–536

    PubMed  Google Scholar 

  • Nakagawa-Hattori Y, Yoshino H and Kondo T (1992) Is Parkinson's disease a mitochondrial disorder? J Neurol Sci 107: 29–33

    Article  PubMed  Google Scholar 

  • Nakao N, Frodl EM, Duan WM, Widner H and Brundin P (1994) Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc Natl Acad Sci USA 91: 12408–12412

    PubMed  Google Scholar 

  • Nicklas WJ, Vyas I and Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 36: 2503–2508

    Article  PubMed  Google Scholar 

  • Nilsson D, Hansson L-E, Johansson K, Nyström C, Paalzow L and Aquilonius S-M (1998) Long-term intraduodenal infusion of a water based levodopa-carbidopa dispersion in very advanced Parkinson's disease. Acta Neurol Scand 97: 175–183

    PubMed  Google Scholar 

  • Nisipeanu P, Paleacu D and Korczyn AD (1997) Infectious and postinfectious parkinsonism. In: Watts RL and Koller WC (eds) Movement Disorders: Neurologic Principles and Practice, pp 307–313. McGraw-Hill, New York

    Google Scholar 

  • Nutt JG (1987) 'On-off’ phenomenon: relation to levodopa pharmacokinetics and pharmacodynamics. Ann Neurol 22: 535–540

    PubMed  Google Scholar 

  • Offen D, Hochman A, Gorodin S, Ziv I, Shirvan A, Barzilai A and Melamed E (1999) Oxidative stress and neuroprotection in Parkinson's disease: Implications from studies on dopamine-induced apoptosis. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 265–269. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Olanow CW, Fahn S, Langston JW and Godbold J (1996) Selegiline and mortality in Parkinson's disease. Ann Neurol 40: 841–845

    PubMed  Google Scholar 

  • Olanow CW, Myllyla VV, Sotaniemi KA, Larsen JP, Palhagen S, Przuntek H, Heinonen EH, Kilkku O, Lammintausta R, Maki-Ikola O and Rinne UK (1998) Effects of selegiline on mortality in patients with Parkinson's disease: a meta-analysis. Neurology 51: 825–830

    PubMed  Google Scholar 

  • Pahwa R (1997) Toxin-induced parkinsonian syndromes. In: Watts RL and Koller WC (eds) Movement Disorders: Neurologic Principles and Practice, pp 315–323. McGraw-Hill, New York

    Google Scholar 

  • Parent A and Hazrati L-N (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91–127

    Article  PubMed  Google Scholar 

  • Parent A and Hazrati L-N (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20: 128–154

    Article  PubMed  Google Scholar 

  • Parkinson J (1817) An essay on the shaking palsy. Whittingham and Rowland, London

    Google Scholar 

  • Payami H, Larsen K, Bernard S and Nutt J (1994) Increased risk of Parkinson's disease in parents and siblings of patients. Ann Neurol 36 (4): 659–661

    PubMed  Google Scholar 

  • Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H and Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 2(12): 1137–1140

    Article  PubMed  Google Scholar 

  • Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS and Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 32: 151–161

    PubMed  Google Scholar 

  • Poewe W and Wenning GK (2000) Apomorphine: an underutilized theraphy for Parkinson's disease. Mov Disord 15(5): 789–794

    Article  PubMed  Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE and Lang AE (2000) A five year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. N Engl J Med 342: 1484–1491

    Article  PubMed  Google Scholar 

  • Rinne UK, Bracco F, Chouza C, Dupont E, Gershanik O, Masso JFM, Montastruc J-L and Marsden CD (1999) Early treatment of Parkinson's disease with cabergoline delays the onset of motor complications: results of a double-blind levodopa controlled trial. Eur J Neurol 6(5): S17-S23

    Article  Google Scholar 

  • Rodriguez MC, Obeso JA and Olanaw CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson's disease: A target for neuroprotection. Ann Neurol 44(1): S175-S188

    PubMed  Google Scholar 

  • Rosenblad C, Martinez-Serrano A and Björklund A (1996) Glial cell line-derived neurotrophic factor increases survival, growth and function of intrastriatal fetal nigral dopaminergic grafts. Neurosci 75: 979–985

    Article  Google Scholar 

  • Rybecki BA, Johnson CC, Uman J and Gorell JM (1993) Parkinson's disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 8: 87–92

    PubMed  Google Scholar 

  • Schurman PR, Speelman DJ and Bosch DA (1998) Thalamic stimulation versus thalamotomy in a prospective randomized trial. Acta Neurochir 140: 838

    Google Scholar 

  • Selby G (1967) Stereotactic surgery for the relief of Parkinson's disease. Part 1. A critical review. J Neurol Sci 5: 315–342

    Article  PubMed  Google Scholar 

  • Semchuk K, Love EJ and Lee RG (1992) Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology 42: 1328–1335

    PubMed  Google Scholar 

  • Siegfried J and Lippitz B (1994) Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all Parkinsonian symptoms. Neurosurgery 35: 1126–1130

    PubMed  Google Scholar 

  • Siegfried J, Taub E and Wellis GN (1999) Long-term electrostimulation of the ventroposterolateral pallidum in the treatment of Parkinson's disease. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 623–626. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Smith Y and Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453: 353–356

    PubMed  Google Scholar 

  • Smith Y, Parent A, Séguéla P and Descarries L (1987) Distribution of GABA immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol 259: 50–65

    PubMed  Google Scholar 

  • Snow BJ, MacDonald L, Mcauley D and Wallis W 2000) The effect of amantadine on levo-dopa induced dyskinesias in Parkinson's disease: a double-blind, placebo-controlled study. Clin Pharmacol 23: 82–85

    Google Scholar 

  • Spencer DD, Robbins RJ, Naftolin F et al. (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. N Engl J Med 327: 1541–1548

    PubMed  Google Scholar 

  • Spiegel EA and Wycis HT (1954) Ansotomy in paralysis agitans. Arch Neurol Psychiat (Chic.) 71: 598–614

    Google Scholar 

  • Spiegelmann R and Chasin S (1996) Posteroventral pallidotomy: experience with 100 cases. Acta Neurochir 138: 644

    Google Scholar 

  • Svennilson E, Torvik A, Lowe R and Leksell L (1960) Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatr Neurol Scand 35: 358–377

    Google Scholar 

  • Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson's disease. Trends Neurosci 12: 49–54

    Article  PubMed  Google Scholar 

  • Tanner CM and Ben-Shlomo Y (1999) Epidemiology of Parkinson's disease. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 265–269. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Tanner CM, Hubble JP and Chan P (1997) Epidemiology and genetics of Parkinson's disease. In: Watts RL and Koller WC (eds) Movement Disorders: Neurologic Principles and Practice, pp 137–152. McGraw-Hill, New York

    Google Scholar 

  • Tasker RR, Yamashiro K and Lenz F (1988) Thalamotomy for Parkinson's disease: microelectrode technique. In: Lunsford LD (ed.) Modern Stereotactic Neurosurgery, pp 297–314. Nijhoff, The Hague

    Google Scholar 

  • Tasker RR, Munz M, Junn FSCK et al. (1997) Deep brain stimulation and thalamotomy for tremor compared. Acta Neurochir 68 (Suppl): 49–53

    Google Scholar 

  • Tretiakoff C (1919) Contribution a l'etude de l'anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonus musculaires et de la maladie de Parkinson. Thesis. University of Paris

  • Tronnier VM, Krause M, Heck A, Kronenbürger M, Bonsanto MM, Tronnier J and Fogel W (1999) Deep brain stimulation for the treatment of movement disorders. Neurol Psychiatry Brain Res 6: 199–212

    Google Scholar 

  • Von Economo C (1917) Encephalitis lethargica. Wien Klin Wochnschr 30: 581

    Google Scholar 

  • Widner H (1999) The case for neural tissue transplantation as a treatment for Parkinson's disease. In: Stern GM (ed) Parkinson's Disease: Advances in Neurology, Vol 80, pp 641–649. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Widner H and Brundin P (1988) Immunological aspects of grafting in the mammalian central nervous system: a review and speculative synthesis. Brain Res Rev 13: 287–324

    Article  Google Scholar 

  • Wooten GF, Currie LJ, Bennett JP, Harrison MB, Trugman JM and Parker WD Jr (1997) Maternal inheritance in Parkinson's disease. Ann Neurol 41: 265–268

    PubMed  Google Scholar 

  • Yurek D, Lu W, Hipkens S and Wiegand SJ (1996) BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons. Exp Neurol 137: 105–118

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjarkam, C.R., Sørensen, J.C., Sunde, N.Å. et al. New strategies for the treatment of Parkinson's disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2, 193–207 (2001). https://doi.org/10.1023/A:1011565207964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011565207964

Navigation