Skip to main content
Log in

The finite volume method for Richards equation

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper we prove the convergence of a finite volume scheme for the discretization of an elliptic–parabolic problem, namely Richards equation β(P)t−div(K(β(P))× ∇(P+z))=0, together with Dirichlet boundary conditions and an initial condition. This is done by means of a priori estimates in L2 and the use of Kolmogorov's theorem on relative compactness of subsets of L2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183(4) (1983) 311–341.

    MATH  MathSciNet  Google Scholar 

  2. L.A. Baughman and N.J. Walkington, Co-volume methods for degenerate parabolic problems, Numer. Math. 64 (1993) 45–67.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Brezis, Analyse Fonctionnelle, Théorie et Applications (Masson, Paris, 1983).

    MATH  Google Scholar 

  4. M.A. Celia, E.T. Bouloutas and R.L. Zarba, A general mass-conservative numerical solution for the unsaturated flow in porous media, Water Resour. Res. 26 (1990) 1483–1496.

    Article  Google Scholar 

  5. L. M. Chounet, D. Hilhorst, C. Jouron, Y. Kelanemer and P. Nicolas, Saturated-unsaturated simulation for coupled heat and mass transfer in the ground by means of a mixed finite element method, Adv. Water Resources 22(5) (1999) 445–460.

    Article  Google Scholar 

  6. K. Deimling, Nonlinear Functional Analysis (Springer, 1985).

  7. C.J. van Duijn and L.A. Peletier, Nonstationary filtration in partially saturated porous media, Arch. Rat. Mech. Anal. 78(2) (1982) 173–198.

    Article  MathSciNet  Google Scholar 

  8. I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels (Dunod, Paris, 1974).

    MATH  Google Scholar 

  9. R. Eymard, T. Gallouët and R. Herbin, Finite volumes method, to appear in the Handbook of Numerical Analysis, eds. Ph. Ciarlet and J.L. Lyons.

  10. R. Eymard, T. Gallouët, D. Hilhorst and Y. Naït Slimane, Finite volumes and nonlinear diffusion equations, M2AN 32 (1998) 747–761.

    MATH  Google Scholar 

  11. R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for an elliptic-parabolic equation, Acta Math. Univ. Comenian. 67 (1998) 181–195.

    MATH  MathSciNet  Google Scholar 

  12. P. Folkovič, P. Knabner, C. Tapp and K. Thiele, Adaptive finite volume discretization of density driven flows in porous media, in: Transport de Contaminants en Milieux Poreux (Support de Cours), CEA-EDF-INRIA, INRIA (June 1997) pp. 322–355.

  13. P.A. Forsyth and M.C. Kropinski, Monotonicity considerations for saturated-unsaturated subsurface flow, SIAM J. Sci. Comput. 18(5) (1997) 1328–1354.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Fuhrmann and H. Langmach, Time-implicit Voronoi box based finite volume schemes for scalar nonlinear elliptic-parabolic conservation laws, Preprint (1997).

  15. M. Gutnic, Sur des problèmes d'évolution non linéaires en milieu poreux, Thèse de doctorat, Université Paris-Sud (1998).

  16. R. Haverkampf, M. Vauclin, M. Touma, P.J. Wierenga and G. Vachaud, A comparison of numerical simulation models for one-dimensional infiltration, Soil Sci. Soc. Am. J. 41 (1977) 285–294.

    Article  Google Scholar 

  17. R. Herbin, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Numer. Methods Partial Differential Equations (1995) 165–173.

  18. U. Hornung, Numerische Simulation von gesättigt-ungesättigt Wasserflüssen in porösen Medien, in: Numerische Behandlung von Differentialgleichungen mit besonderer Berücksichtigung freier Randwertaufgaben, International Series of Numerical Mathematics, Vol. 39 (Birkhäuser, Basel-Boston, 1978) pp. 214–232.

    Google Scholar 

  19. J. Hulshof, Elliptic-parabolic problems: the interface, Ph.D. thesis, Rijksuniversiteit Leiden (1986).

  20. J. Hulshof and N. Wolanski, Monotone flows in n-dimensional partially saturated porous media: Lipschitz-continuity of the interface, Arch. Rat. Mech. Anal. 102(4) (1988) 287–305.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Kelanemer, Transferts couplés de masse et de chaleur dans les milieux poreux: modélisation et étude numérique, Thèse de Doctorat, Université Paris-Sud (1994).

  22. P. Knabner, Finite element simulation of saturated-unsaturated flow through porous media, Large scale scientific computing, Progr. Sci. Comput. 7 (1987) 83–93.

    MATH  Google Scholar 

  23. F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996) 20–38.

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Ramarosy, Application de la méthode des volumes finis à des problèmes d'environnement et de traitement d'image, Thèse de doctorat, Université Paris-Sud (1999).

  25. H. Van Der Vorst, Bi-CGStab: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–645.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Eymard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eymard, R., Gutnic, M. & Hilhorst, D. The finite volume method for Richards equation. Computational Geosciences 3, 259–294 (1999). https://doi.org/10.1023/A:1011547513583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011547513583

Navigation