Skip to main content
Log in

Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cities

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Recently, many urban areas of the world have experienced rapid growth of population and industrial activity raising concerns of environmental deterioration. To meet challenges associated with such rapid urbanization, it has become necessary to implement wise strategies for environmental management and planning, addressing the exclusive demands of urban zones for maintaining environmental sustainability and functioning with minimum disruption. These strategies and related public policy must be based on state-of-the-science tools for environmental forecasting, in particular, on mathematical models that accurately incorporate physical, biological, chemical and geological processes at work on urban scales. Central to such models are the mechanics of environmental fluids (air and water) and their transport and transformation characteristics. Although much progress has been made on understanding environmental flow phenomena, a myriad of issues akin to urban flow, the transport phenomena, air and water quality and health issues (epidemiology) remain to be understood and quantified. We propose to initiate a new focus area – Urban Fluid Mechanics (UFM) – tailored to research on such issues. For optimal societal impact, UFM must delve into fundamental and applied fluid flow problems of immediate utility for the development of urban public policy and environmental regulations. Such efforts often entail the use of `whole' systems approach to environmental studies, requiring careful synthesis between crosscutting areas.

In this paper, a few topics in the realm of UFM are presented, the theme being the flow and air quality in urban areas. Topics such as the scales of flow, the atmospheric boundary layer, pollutants and their transport and modeling of flow and air quality are briefly reviewed, discussed and exemplified using case studies. Identification of important flow-related issues, rigorous multidisciplinary approaches to address them and articulation of results in the context of socio-political cause calebre will be the challenges faced by UFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Ackerman, The airflow program in METROMEX. In: F.A. Huff (ed.), Summary Report, No. 74, Ill. State Water Survey (1973) pp. 113–124.

  • F.A. Albini, A phenomenological model for wind speed and shear stress profiles in vegetation cover layers, J. Appl. Meteorol. 20 (1981) 1325–1335.

    Google Scholar 

  • K.J. Allwine, Atmospheric dispersion in mountain valleys and basins, PNL-7922, Pacific Northwest Laboratory Report 199 (1992).

  • J.S. Amthor, Scaling CO2-photosynthesis relationships from the leaf to the canopy, Photosynthesis Res. 39 (1994) 321–350.

    Google Scholar 

  • J.S. Amthor,M.L. Goulden,J.W. Munger andS.C. Wofsy, Testing a mechanistic model of forestcanopy mass and energy exchange using eddy-correlation: carbon dioxide and ozone uptake by a mixed oak-maple stand, Aust. J. Plant Physiol. 21 (1994) 623–651.

    Google Scholar 

  • J.R. Anderson,P.R. Buseck,T.L. Patterson andR. Arimoto, Characterization of the Bermuda tropospheric aerosol by combined individual-particle and bulk-aerosol analysis, Atmospheric. Environ. 30 (1996) 319–338.

    Google Scholar 

  • J.K. Angell,W.H. Hoecker,C.R. Dickson andD.H. Pack, Urban influence on a strong daytime air flow as determined from tetroon flights, J. Appl. Meteorol. 12 (1973) 924–936.

    Google Scholar 

  • S.P. Arya, Air Pollution Meteorology and Dispersion. Oxford University Press, Oxford (1999) 310 pp.

    Google Scholar 

  • R. Avissar andM.M. Verstraete, The representation of continental surface processes in atmospheric models, Rev. Geophys. 28 (1990) 35–52.

    Google Scholar 

  • J.J. Baik andH.Y. Chun, A dynamical model for urban heat island., Bound. Layer Meteorol. 83 (1997) 463–477.

    Google Scholar 

  • J.J. Baik andJ.J. Kim, A numerical study of flow and pollutant dispersion characteristics in urban street canyons, J. Appl. Meteorol. 38 (1999) 1576–1589.

    Google Scholar 

  • J.J. Baik,R.S. Park,H.Y. Chun andJ.J. Kim, A Laboratory model of urban street canyon flows, J. Appl. Meteorol. 39 (2000) 1592–1600.

    Google Scholar 

  • S.E. Bauman,E.T. Williams,H.L. Finston,E.F. Ferrand andJ. Sontowski, Street level versus rooftop sampling: carbon monoxide and aerosol in New York City, Atmospheric. Environ. 16 (1982) 2489–2496.

    Google Scholar 

  • P.E. Benson, CALINE4-A Dispersion Model for Predicting Air Pollutant Concentrations Near Roadways, FHWA/CA/TL-84/15 (1989).

  • S.E. Belcher andJ.C.R. Hunt, Turbulent flow over hills and waves, Ann. Rev. Fluid Mech. 30 (1998) 507–538.

    Google Scholar 

  • S.E. Belcher,D.P. Xu andJ.C.R. Hunt, The response of a turbulent boundary layer to arbitrary distributed two-dimensional roughness changes, Q. J. Roy. Meteorol. Soc. 116 (1990) 611–635.

    Google Scholar 

  • W.J. Beranek, General rules for the determination of wind environment. In: J.R. Pfafflin andE.N. Ziegler (eds.), Proc. Fifth Intern. Conv. on Wind Eng., July, Fort Collins, CO, Vol. 2,(.), Gordon and Breach Science Publishers, New York, NY (1979).

    Google Scholar 

  • N.S. Berman,D.L. Boyer,A.J. Brazel,S.W. Brazel,R.A. Celada,R-R. Chen,H.J.S. Fernando,M.J. Fitch andH-W Wang, Synoptic Classification and the Design of Physical Model Experiments for Complex Terrain, J. Appl. Meteorol. 34 (1995) 719–730.

    Google Scholar 

  • R. Bornstein, Mean diurnal circulation and thermodynamic evolution of urban boundary layer. In: Modeling the Urban Boundary Layer, Am. Meteorol. Soc. (1987) pp. 53–93.

  • R.D. Bornstein, Observations of the urban heat island effect in New York City, J. Appl. Meteorol. 7 (1968) 575–582.

    Google Scholar 

  • R.D. Bornstein andD.S. Johnson, Urban-rural wind velocity differences, Atmospheric. Environ. 11 (1977) 597–604.

    Google Scholar 

  • R.D. Bornstein andT.R. Oke, Influence of pollution on urban climatology, Adv. Environ. Sci. Engrg. 2 (1981) 171–202.

    Google Scholar 

  • R.D. Bornstein,P. Thunis,P. Opossi andG. Schayes, Topographic, vorticity-mode, mesoscale b (TVM) model Part II: Evaluation, J. Appl. Meteorol. 35 (1996) 1824–1834.

    Google Scholar 

  • E.F. Bradley, An experimental study of the profiles of wind speed, shearing stress and turbulence at crest of a large hill, Quart. J. Roy. Meteorol. Soc. 106 (1980) 101–123.

    Google Scholar 

  • W.F. Bradley, A micrometeorological study of velocity profile and surface drag in the region modified by a change in surface roughness, Q. J. Roy. Meteorol. Soc. 94 (1968) 361–329.

    Google Scholar 

  • J. Brechling andH. Ihlenfeld, The modeling of the atmospheric boundary layer in a wind tunnel with an open test section and its application for investigations of the flow around buildings. In: R.J. Perkins andS.E. Belcher (eds.) Flow and Dispersion Through Groups of Obstacles. Claredon Press, New York (1997) pp. 71–88.

    Google Scholar 

  • G.A. Briggs, Diffusion modeling with convective scaling and effects of surface inhomogeneities. In: Modeling the Urban Boundary Layer, Am. Meteorol. Soc. (1987) pp. 297–333.

  • G.A. Briggs,R.S. Thompson andW.H. Snyder, Dense gas removal from a valley by cross winds, J. Haz. Mat. 24 (1990) 1–38.

    Google Scholar 

  • P.W.M. Brighton, Strongly stratified flow past three-dimensional obstacles, Q. Jour. Roy. Meteorol. Soc. 104 (1978) 289–307.

    Google Scholar 

  • R.E. Britter andJ.C.R. Hunt, Velocity measurements and order of magnitude estimates of the flow between two buildings in a simulated atmospheric boundary layer, J. Indust. Aerodynamics 4 (1979) 165–182.

    Google Scholar 

  • M. Brown,M. Leach,J. Reisner,D. Stevens,S. Smith,S. Chin,S. Chan andB. Lee, Numerical modeling from mesoscale to urban scale to building scale, Proc. 3rd Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) pp. 64–65.

  • W. Brutsaert, Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness, Boundary Layer Meteorol. 16 (1979) 365–388.

    Google Scholar 

  • G. Bugliarello, Rethinking Today's Cities-Designing Tomorrows Urban Centers, Paper presented at the Technical Symposium on Earth Systems Engineering, National Academy of Engineering, Washington DC, October 24 (2000).

  • Bureau of Statistics, U.S. Department of Transportation, The National Transportation Statistics (1999).

  • D.W. Byun andJ.K.S. Ching, Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modeling system, EPA/600/R-99/030, U.S. EPA (1999).

  • R.E. Carbone, Atmospheric observations in weather prediction. In: R.E. Pielke andSr. R.E. Pielke Storms, Vol 1, Routledge Press, London (2000).

    Google Scholar 

  • I.P. Castro,A. Kumar,W.H. Snyder andS.P.S. Arya, Removal of slightly heavy gases from a valley by crosswinds, J. Haz. Mat. 34 (1993) 271–293.

    Google Scholar 

  • S.J. Caughey,J.C. Wyngaard andJ.C. Kaimal, Turbulence in the evolving stable boundary layer, J. Atmospheric. Sci. 36 (1979) 1041–1052.

    Google Scholar 

  • J.E. Cermak,D.J. Lombardi andR.S. Thompson, Applications of physical modeling to the investigation of air pollution problems in urban areas, presented at 67th Annual Meeting of Air Poll. Control Assoc., June 9–13, Denver, CO. APCA paper # 74–160 (1974).

  • S.T. Chan,D.E. Stevens andR.L. Lee, A model for flow and dispersion around buildings and its validation using laboratory measurements, Proc. 3rd Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) pp. 56–57.

  • J.S. Chang,R.A. Brost,I.S.A. Isaksen,S. Madronich,P. Middleton,W.R. Stockwell andC.J. Walcek, A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophy. Res. 92 (1987) 14681–14700.

    Google Scholar 

  • J.S. Chang,P.B. Middleton,W.R. Stockwell,C.J. Walcek,J.E. Pleim,H.H. Landsford,S. Madronich,F.S. Binkowski,N.L. Seaman andD.R. Stauffer, The Regional acid deposition model and engineering model, NAPAP SOS/T Report 4, in National Acid Precipitation Assessment Program: State of Science and Technology, Volume 1, National Acid Precipitation Program, 722 Jackson Place, N. W.,Washington, D.C. September (1990).

    Google Scholar 

  • S.A. Cheatham,B.Z. Cybyk andJ.P. Boris, Simulation of fluid dynamics around a cubical building, Proc. 3 Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) pp. 46–47.

  • J.K.S. Ching,J.M. Godowitch andJ.F. Clarke, Urban scale variations of turbulent energy fluxes, Presented at AMS Specialty Conf. on Air Quality Modeling of the Nonhomogeneous, Nonstationary Urban Boundary Layer, Oct. 31-Nov. 4, Baltimore, MD (1983).

  • R.M. Cionco, A mathematical model for air flow in a vegetative canopy, J. Appl. Meteorol. 4 (1995) 517.

    Google Scholar 

  • R.M. Cionco, Design and execution of Project WIND. In: Proc 19th Conference of Agricultural and Forest Meteorology (Charleston), American Meteorology Society, Boston, MA (1989).

    Google Scholar 

  • R.N. Cionco and others, An overview of MADONA: a multinational field study of high resolution meteorology and diffusion over complex terrain, Bull. Am. Met. Soc. 80 (1999) 5–19.

    Google Scholar 

  • J.S. Cole andH.J.S. Fernando, Some aspects of the decay of convective turbulence, Fluid Dyn. Res. 23 (1998) 167–176

    Google Scholar 

  • J.P. Collins,A. Kinzig,N.B. Grimm,W.F. Fagan,D. Hope,J. Wu andE.T. Borer, A new urban ecology. Am. Sci. 88 (2000) 416–425.

    Google Scholar 

  • R.L. Coulter, A case study of turbulence in the stable Nocturnal Boundary Layer, Boundary-Layer Meteorol., 52 (1990) 75–92.

    Google Scholar 

  • C.F. Cox,B.Z. Cybyk,J.P. Boris,Y.T. Fung andS.W. Chang, Coupled microscale-mesoscale modeling of contaminant transport in urban environments, Proc. 3rd Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) pp. 66–67.

  • W.F. Dabberdt,F.L. Ludwig andW.B. Jr. Johnson, Validation and applications of an urban diffusion model for vehicular pollutants, Atmospheric. Environ. 7 (1973) 603–618.

    Google Scholar 

  • W.F. Dabberdt,J. Hales,S. Zubrick,A. Cook,W. Krajewski,J.C. Doran,C. Mueller,C. King,R.N. Keener,R. Bornstein,D. Rodenhuis,P. Kocin,M.A. Rossetti,F. Sharrocks,E.M., Sr., Stanley, Forcast Issues in the Urban Zone: Report of the 10th prospectus Development Team of the U.S. Weather Research Program, Bull. Amer. Meteorol. Soc. 81 (2000) 2047–2064.

    Google Scholar 

  • B. Davidson andP.K. Rao, Experimental studies of the valley-plainwind, Int. J. Air Water Pollu. 7 (1963) 907–923.

    Google Scholar 

  • I.P.D. De Silva,A. Brandt,L.J. Montenegro andH.J.S. Fernando, Gradient Richardson number measurements in a stratified shear layer, Dyn. Atmospheric. Oceans. 30 (1979) 47–63.

    Google Scholar 

  • D.G.G. De Pury andG.D. Farquhar, Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models, Plant, Cell and Environ. 20 (1997) 537–557.

    Google Scholar 

  • J.W. Deardorff, Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection, J. Atmospheric. Sci. 27 (1970) 1211–1213.

    Google Scholar 

  • J.W. Deardorff, Mixed-layer entrainment: A review. In: J.C. Weil (ed.) 7th Symposium on Turbulence and Diffusion., Am. Meteorol. Soc. (1985) pp. 39–42.

  • J.W. Deardorff,G.E. Willis andD.K. Lilly, Laboratory investigation of non-steady penetrative convection, J. Fluid Mech. 35 (1969) 7–31.

    Google Scholar 

  • J.W. Deardoff,G.E. Willis andB.H. Stockton, Laboratory studies of the entrainment zoone of a convectively mixed layer, J. Fluid Mech. 100 (1980) 41–64.

    Google Scholar 

  • W. Debler andS.W. Armfield, The purging of saline water from rectangular and trapezoidal cavities by an overflow of turbulent sweet water, J. Hydr. Res. 35 (1997) 43–62.

    Google Scholar 

  • H. Derbyshire, Stable boundary layers: observations, models and variability, Part I: Modeling and measurements, Boundary-Layer Meteorol. 74 (1995a) 19–54.

    Google Scholar 

  • H. Derbyshire, Stable boundary layers: observations, models and variability Part II: Data analysis and averaging effects, Boundary-Layer Meteorol. 75 (1995b) 1–24.

    Google Scholar 

  • S.H. Derbyshire, Nieuwstadt's stable boundary layer revisited, Q. J. Roy. Meteorol. Soc. 116 (1990) 127–158.

    Google Scholar 

  • M.H. Dickerson, Mascon-A mass consistent atmospheric flux model for regions with complex terrain, J. Appl. Meteorol. 17 (1978) 241–253.

    Google Scholar 

  • M.H. Dickerson andP.H. Gudiksen, Atmospheric studies in complex Terrain, Tech Progress Report FY-1979 through FY-1983, ASCOT 84–1/UCID-19851, U. S. Dept. of Energy, Lawrence Livermore Natl. Lab., Livermore, CA (1984).

  • R.E. Dickinson,A.N. Hahmann andQ. Shao, Commentary onMecca sensitivity studies. In: Howe W andHenderson-Sellers A (Eds.) Assessing Climate Change. Sidney: Gordon and Breach Science Publishers (1997) pp. 195–206.

    Google Scholar 

  • Doran, J.C., 1991: The effects of ambient winds on valley drainage flows, Boundary-Layer Meteorol., 55, 177–189.

    Google Scholar 

  • J.C. Doran,T.W. Horst andC.D. Whiteman, The development and structure of nocturnal slope winds in a simple valley, Boundary-Layer Meteorol. 52 (1990) 41–68.

    Google Scholar 

  • J. Dudhia,D. Gill,Y-R. Guo,K. Manning,W. Wang andJ. Chiszar, PSU/NCARMesoscale modeling system tutorial class notes and user's guide: MM5 modeling system version 3, NCAR (2000).

  • F. Ellefsen, A fine resolution urban terrain characteristics database of greater St. Louis, Missouri. STAS Report for U.S. Army Research Laboratory-BED, Contact: R.M. Cionco at USARL-BED,Adelphi, MD, USA (1993).

  • W.P. Elliot, The growth of the atmospheric internal boundary layer, Trans. Am. Geophys. Union, 39 (1958) 1048–1054.

    Google Scholar 

  • A.W. Ellis,M.L. Hilderbrandt andH.J.S. Fernando, Evidence of lower atmospheric ozone 'sloshing’ in an urban valley, Phys. Geogr. 20 (1999) 520–536.

    Google Scholar 

  • A.W. Ellis,M.L. Hilderbrandt,W. Thomas andH.J.S. Fernando, A case study of the climatic mechanisms contributing to the transport of lower atmospheric ozone across metropolitan Phoenix area, J. Climate Res. 15 (2000) 13–31.

    Google Scholar 

  • T.H. Ellison andJ.S. Turner, Turbulent entrainment in stratified flows, J. Fluid Mech. 6 (1959) 423–448.

    Google Scholar 

  • M.H. Emery,A.Y. Chtchelkanova,B.Z. Cybyk,J.P. Boris,J.H. Shinn andF.J. Bouveia, Detailed modeling of air flow around a complex building, Proc. 3rd Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) 48–49.

  • J.D. Fast,J.C. Doran,W.J. Shaw,R.L. Coulter andT.J. Martin, The evolution of the boundary layer and its effect on air chemistry in the Phoenix area. J. Geophys. Res. 105 (2000) 22,833–22,848.

    Google Scholar 

  • G.D. Farquhar andS. von Caemmerer, Modelling of photosynthetic response to environmental conditions. In: Lange OL,Noble PS,Osmond, CB,Ziegler H (Eds.), Physiological Plant Ecology II, Encycl. Plant Phys. (1982) pp. 549–587, Berlin, Springer-Verlag.

    Google Scholar 

  • C. Freytag, MERKUR-results: aspects of the temperature field and the energy budget in a large alpine valley during mountain and valley wind, Contrib. Atmospheric. Phys. 58 (1985) 458–476.

    Google Scholar 

  • C. Freytag, Results from the MERKUR experiment: Mass budget and vertical motions in a large valley during mountain and valley wind, Meteorol. Atmospheric. Phys. 37 (1987) 129–140.

    Google Scholar 

  • H.J.S. Fernando, Turbulent mixing in stratified fluids, Ann. Rev. Fluid Mech. 23 (1991) 455–493.

    Google Scholar 

  • H.J.S. Fernando, Migration of density interfaces subjected to differential turbulent forcing, Geophys. Astrophys. Fluid Dyn. 78 (1995) 1–20.

    Google Scholar 

  • H.J.S. Fernando andJ.C.R. Hunt, Some aspects of turbulence and mixing in stably stratified fluids, Dyn. Atmospheric. Oceans 23 (1996) 35–62.

    Google Scholar 

  • J.J. Finnigan andP.J. Mulhearn, Modeling waving crops in a wind tunnel, Bound. Layer Meteorol. 14 (1978) 253–277.

    Google Scholar 

  • S. Galmarini,C. Beets,P.G. Duynkerke andJ. Vila-Guerau De Arellano, Stable nocturnal boundary layers: A comparison of one-dimensional and large-eddy simulation models, Boundary-Layer Meteorol. 88 (1998) 181–210.

    Google Scholar 

  • J. Gandemer, Inconfort du au vent aux abords des batiments: concepts aerodynamiques, cahiers du centre scientifique et technique du batiment, No. 170, Cahier 1384. C.S.T.B., Nantes, France. Also Avail. in Translation as NBS Tech. Note 710–719, March 1978 (1976) 48 pp

    Google Scholar 

  • J.R. Garratt, Review: the atmospheric boundary layer, Earth-Science Rev. 37 (1994) 89–134.

    Google Scholar 

  • S. Goldstein, W akes. Ch. XIII. In: Modern Developments In Fluid Dynamics, 11, Dover Publications, New York, NY (1965) pp. 548–600.

    Google Scholar 

  • W. Gong,P.A. Taylor andA. Dornbrack, Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves, J. Fluid Mech. 312 (1996) 1–37.

    Google Scholar 

  • A.A. Grachev,H.J.S. Fernando,J.C.R. Hunt,E.P. Pardyjak,I. Oroud,N.S. Berman,F. Yu andG. Wang, The structure of the atmospheric boundary layer over the complex terrain of Phoenix valley, Proc. of the 13th Symposium on Boundary Layers and Turbulence, 79th AMS Meeting, Jan. 10–15, Dallas, Texas (1999) pp. 331–334.

  • A.L.M. Grant, An observation study of the evening transition boundary-layer, Q. J. Roy. Meteorol. Soc. 123 (1997) 657–677.

    Google Scholar 

  • G.A. Grell,J. Dudhia andD.R. Stauffer, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Technical Note, NCAR/TN-398+STR (1994) pp. 122.

  • S. Grossman-Clarke,B.A. Kimball,D.J. Hunsaker,S.P. Long,R.L. Garcia,T. Kartschall,G.W. Wall,P.J., Jr Pinter,F. Wechsung andR.L. LaMorte, Effects of elevated CO2 on canopy transpiration in senescent spring wheat, Agr. Forest Meteorol. 93 (1999) 95–109.

    Google Scholar 

  • H. Hanazaki, A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle, Phys. Fluidsm. A4 (1999) 2230–2243.

    Google Scholar 

  • S.R. Hanna, Urban diffusion problems. Ch. 6 in Lectures on Air Pollution and Environmental Impact Analyses, D. A. Haugen, Coord., Amer. Meteorol. Soc., Boston, MA (1975) 209–227.

    Google Scholar 

  • S.R. Hanna andD.G. Strimaitis, Rugged terrain effects on diffusion. In: Atmospheric Process Over Complex Terrain, Meteorol. Monogr., 23, Amer. Meteorol. Soc., Boston, MA (1990) pp. 109–142.

    Google Scholar 

  • S.R. Hanna,G.A. Briggs andR.P. Jr., Hosker, Handbook on Atmospheric Diffusion. U.S. Dept. of Energy Tech. Info. Center, Oak Ridge, TN, DOE/TIC-11223. Avail. NTIS, Springfield, VA, as DE8 2002 045 (1982) 102 pp.

    Google Scholar 

  • S.L. Heisler,P. Hyde,M. Hubble,F. Keene,G. Neuroth,M. Ringsmuth, andW.R. Oliver, Reanalysis of the metropolitan Phoenix voluntary early ozone plan (VEOP). ENSR Document 0493–014–710 (1997).

  • B. Hennemuth, Temperature field and energy budget of a small Alpine valley, Contrib. Atmospheric. Phys. 58 (1985) 545–559.

    Google Scholar 

  • B. Hennemuth, Thermal asymmetry and cross-valley circulation in a small alpine valley, Boundary Layer Meteorol. 36 (1986) 371–394.

    Google Scholar 

  • B. Hennemuth andU. Kohler, Estimation of the energy balance of the Dischma Valley, Arch. Meteorol. Geophys. Bioklimatol. Ser. B34 (1984) 97–119.

  • A.W. Hogan, andM.G. Ferrick, Observations in nonurban heat islands, J. Appl. Meteorol. 37 (1997) 232–236.

    Google Scholar 

  • A.A.M. Holstag andF.T.M. Nieuwstadt, Scaling the Atmospheric Boundary Layer, Boundary-Layer Meteorol. 36 (1986) 201–209.

    Google Scholar 

  • T.W. Horst,K.J. Allwine andC.D. Whiteman, A thermal energy budget for nocturnal drainage flow in a simple valley, Preprints, Fourth Conf. on Mountain Meteorology, Seattle, WA, American Meteorology Society (1987) pp. 15–19.

    Google Scholar 

  • T.W. Horst,D.C. Bader andC.D. Whiteman, Comparison of observed and simulated nocturnal valley thermal energy budgets, Proc. Int. Conf. On Mountain Meteorology and ALPEX, Garmisch-Partenkirchen, Germany, Germ. Meteorol. Soc. (1989) pp. 127.

  • R.P. Jr. Hosker, Empirical estimation of wake cavity size behind block-type structures, In Preprints of Fourth Symposium on Turb., Diff. and Air Poll., Jan. 15–18, Reno, NV, Am. Meteorol. Soc., Boston, MA (1979) pp. 92–107.

    Google Scholar 

  • R.P. Jr. Hosker, Flow and dispersion near obstacles. In: D. Randerson, (Ed.), Ch. 7 of Atmospheric Science and Power Production, U.S. Dept. Energy, Tech. Info. Center, DOE/TIC-2760 (DE 84005177),Oak Ridge, TN (1984).

  • R.P. Jr. Hosker, The effects of buildings on local dispersion. In: Modeling the Urban Boundary Layer, Am. Meteorol. Soc. (1987) pp. 95–159.

  • W.G. Hoydysh,R.A. Griffiths andY. Ogawa, A scale model study of the dispersion of pollution in street canyons. Presented at 67th Annual Meeting of Air Poll. Control Assoc., June 9–13, Denver, CO. APCA (1974).

  • A. Huber,M. Bolstad,M. Freeman,S. Rida,E. Bish andK. Kuehlert, Addressing human exposures to air pollutants around buildings in urban areas with computational fluid dynamics (CFD) models, 3rd Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) pp. 62–63.

  • J.C.R. Hunt, Diffusion in the stably stratified atmospheric boundary layer, J. Clim. App. Meteorol. 24 (1985) 1187–1195.

    Google Scholar 

  • J.C.R. Hunt, How cities will look in the 21st century? Habitat II Conference, Publisher: United Nations Center for Regional Development, Nagoya, Japan (1996).

    Google Scholar 

  • J.C.R. Hunt andJ.E. Simpson, Atmospheric boundary layers over non-homogeneous terrain. In: E. Plate (ed.), Ch. 7 of Engineering Meteorol., Elsevier (1982) pp. 269–318.

  • J.C.R. Hunt,J.C. Kaimal,J.E. Gaynor, Some observations of turbulence structure in stable layers, Q. J. Roy. Meteorol. Soc. 111 (1985) 793–815.

    Google Scholar 

  • J.C.R. Hunt,Y. Feng,P.F. Linden,M.D. Greenslade andS.D. Mobbs, Low-Froude-number stable flows past mountains, Il Nuovo Cimento 20C (1997) 261–272.

    Google Scholar 

  • J.C.R. Hunt,H.J.S. Fernando,A.A. Grachev,E.P. Pardyjak,N.S. Berman, andF. Yu, Slope-breezes and weak air movements in a wide enclosed valley, submitted for publication (2000).

  • T. Hussain andB.E. Lee, A wind tunnel study of the mean pressure forces acting on large groups of low rise buildings, J. Wind Ind. Aerodyn. 6 (1980) 207–225.

    Google Scholar 

  • S.B. Idso, Non-water stressed baselines: a key to measuring and interpreting plant water stress, Agr. Forest Meteorol. 24 (1982) 45–55.

    Google Scholar 

  • IGPO, Land Surface Parameterizations/ Soil-Vegetation-Atmosphere-Transfer Schemes Workshop. IGPO Publication Series 31 (1997).

  • N. Isyumov andA.G. Davenport, The ground level wind environment in built-up areas, Proc. Fourth International Conference on Wind Effects on Buildings and Structures, September 8–12, 1977, Heathrow, Cambridge University Press, London (1975) pp. 403–422.

    Google Scholar 

  • P.S. Jackson andJ.C.R. Hunt, Turbulent wind flow over low hills, Q. J. RoyMeteorol. Soc. 101 (1975) 929–955.

    Google Scholar 

  • C.M.J. Jacobs andH.A.R. De Bruin, The sensitivity of regional transpiration to land-surface characteristics: significance of feedback, J. Climate 5 (1992) 683–698.

    Google Scholar 

  • P.G. Jarvis andK.G. McNaughton, Stomatal control of transpiration: scaling up from leaf to region, Adv. Ecological Res. 15 (1986) 1–49.

    Google Scholar 

  • N. Jerram,S.E. Belcher andJ.C.R. Hunt, Turbulent flow through a distributed force-a model for the wind with in and above an urban canopy. In: R.J. Perkins andS.E. Belcher, (eds.) Flow and Dispersion through Group of Obstacles. Clarendon Press, London (1997) pp. 157–175.

    Google Scholar 

  • N. Jerram,J.R. Perkins,J.C.H. Fung,M.J. Davidson,S.E. Belcher andJ.C.R. Hunt, Atmospheric flow through groups of buildings and dispersion from localized sources. In: J.E. Cermak,A. D. Davenport,E.J. Plate, andD.X. Viegas (eds.), Wind Climate In Cities. Kluwer Academic Publishers, Dordrecht (1994) pp. 109–130.

    Google Scholar 

  • W.B. Johnson,R.C. Sklarew andD.B. Turner, Urban air quality simulation modeling. In: A. C. Stern, (ed.), Ch. 10 of Air Pollution, third edition, Vol. I. Academic Press, New York, NY (1976) pp. 503–562.

    Google Scholar 

  • W.B. Johnson,F.L. Ludwig,W.F. Dabberdt andR.J. Allen, An urban diffusion simulation model of carbon monoxide, J. Air Pollut. Control Assoc. 23 (1973) 490–498.

    Google Scholar 

  • R. Joumard, Ausbreitungsmodelle Fur Verkehrs-Immissionen. In: K. Hoffman,P. Leisen, andH. Waldemeyer, (eds.) Strassenschluchten undVergleich zu franzosischen Messungen, Abgasbelastungen durch den Kraftfahrzeugverkehr, TUV Rhineland, Germany (1982) pp. 187–203.

    Google Scholar 

  • J.C. Kaimal, Turbulence spectra, length scales and structure parameters in the stable surface layer, Boundary-Layer Meteorol. 4 (1972) 290–309.

    Google Scholar 

  • J.C. Kaimal,J.C. Wyngaard,D.A. Haugen,O.R. Cote,Y. Izumi,S.J. Caughey, andC.J. Readings, Turbulence structure in the convective boundary layer, J. Atmospheric. Sci. 33 (1976) 2152–2169.

    Google Scholar 

  • J.C. Kaimal andJ.J. Finnigan, Atmospheric Boundary Layer Flows, Oxford University Press (1994).

  • H. Kaplan andN. Dinar, A Lagrangian dispersion model for calculating concentration distribution within a built-up domain, Atmospheric. Environ. 30 (1996) 4197–4207.

    Google Scholar 

  • T. Kawatani andR.N. Meroney, Turbulence and wind speed characteristics within a model canopy flow field, Agr. Meteorol. 7 (1970) 143–158.

    Google Scholar 

  • J.J. Kim andJ.J. Baik, A numerical study of thermal effects on flow and pollutant dispersionin urban street canyons, J. Appl. Meteorol. 38 (1999) 1249–1261.

    Google Scholar 

  • B.A. Kimball,R.L. LaMorte,P.J. Jr. Pinter,G.W. Wall,D.J. Hunsaker,F.J. Adamsen,S.W. Leavitt,T.L. Thompson,A.D. Matthias andT.J. Brooks, Free-air CO2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat, Water Res. Res. 35 (1999) 1179–1190.

    Google Scholar 

  • J.C. Klewicki,J.F. Foss andJ.M. Wallace, High Reynolds number boundary layer turbulence in the atmospheric surface layer above westerns Utah's salt flata. In: Donnelly, R.J. andSreenivasan, K.R. (eds.) Flow in Ultra High Reynolds and Rayleigh Numbers: A Status Report., Springer Verlag (1998) pp. 450–458.

  • J. Kondo,T. Kuwagata andS. Haginoya, Heat budget analysis of nocturnal cooling and daytime heating in a basin, J. Atmospheric. Sci. 46 (1989) 2917–2933.

    Google Scholar 

  • S. Kotaki andT. Sano, Simulation model of air pollution in complex terrains including streets and buildings, Atmospheric. Environ. 15 (1981) 1001–1009.

    Google Scholar 

  • R.A. Kropfli andN.M. Kohn, Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar, J. Appl. Meteorol. 17 (1978) 669–676.

    Google Scholar 

  • V.P. Kukharets andL.R. Tsvang, Atmospheric turbulence characteristics over temperatureinhomogeneous land surface, Part I: Inhomogeneities of land surface temperature, Bound. Layer Meteorol. 86 (1998) 89–101.

    Google Scholar 

  • T. Kuwagata andF. Kimura, F., Daytime boundary layer evolution in a deep valley, Part II: Numerical simulation of the cross-valley circulation, J. Appl. Meteorol. 36 (1997) 883–895.

    Google Scholar 

  • J.P. L'homme andB. Monteny, Theoretical relationship between stomatal resistance and surface temperatures in sparse vegetation. Agr. Forest Meteorol. 104 (2000) 119–131.

    Google Scholar 

  • I.Y. Lee andH.M. Park, Parameterization of the pollutant transport and dispersion in urban street canyons, Atmospheric. Environ. 29 (1994) 2343–2349.

    Google Scholar 

  • R.L. Lee,R.J. Calhoun,S.T. Chan,J. Jr. Leone,J. Shinn andD.E. Stevens, Urban dispersion CFD modeling, Fact or Fiction?, 3rd Symposium on the Urban Environment, 14–18 August, Davis, CA. (2000) pp. 54–55.

  • R. Leuning,F.X. Dunin andY.P. Wang, A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. II. Comparison with measurements. Agr. Forest Meteorol. 91 (1998) 113–125.

    Google Scholar 

  • R. Leuning,F.M. Kelliher,D.G.G. De Pury andE.D. Schulze, Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ. 18 (1995) 1183–1200.

    Google Scholar 

  • Y-L. Lin andR.B. Smith, Transient dynamics of airflow near a local heat source, J. Atmospheric. Sci. 43 (1986) 40–49.

    Google Scholar 

  • E. Jr. Logan andD.S. Barber, I, Effect of lateral spacing on wake characteristics of buildings, NASA Contractor Report CR-3337, Avail. NTIS, Springfield, VA (1980) 74 pp.

    Google Scholar 

  • J. Lu,S.P. Arya,W.H. Synder and R.E. Jr. Lawson, A laboratory study of the urban heat island in a calm and stably stratified environment, Part I: Temperature field, J. Appl. Meteorol. 36 (1997a) 1377–1391.

    Google Scholar 

  • J. Lu,S.P. Arya,W.H. Synder andR.E. Jr. Lawson, A laboratory study of the urban heat Island in a calm and stably stratified environment, Part II: Velocity field, J. Appl. Meteorol. 36 (1997b) 1392–1402.

    Google Scholar 

  • R. Lu andR.P. Turco, Air pollution transport in a coastal environment. Part 1: Two dimensional simulations of sea breeze and mountain effects. J. Atmospheric. Sci. 51 (1994) 2285–2308.

    Google Scholar 

  • F.L. Ludwig andJ.H.S. Kealoha, Urban climatological studies, Final Report, Contract CODSDAHC–20–67-C-0136, Stanford Res. Instit., CA (1968).

    Google Scholar 

  • R.W. Macdonald, Modeling the mean velocity profile in the urban canopy layer. Bound. Layer Meteorol. 97 (2000) 25–45.

    Google Scholar 

  • MAG, Maricopa Association of Governments, Carbon Monoxide Hot Spot Analysis in the Phoenix Urban Area, Report, # T133–80–4, Maricopa Association of Governments Transportation and Planning Office (1980).

  • L. Mahrt, Relation of slope winds to the ambient flow over gentle terrain, Boundary-layer Meteorol. 53 (1990) 93–102.

    Google Scholar 

  • L. Mahrt, Stratified atmospheric boundary layers and breakdown of models, Theor. Comp. Fluid Dynamics 11 (1998) 263–279.

    Google Scholar 

  • Y.S. Malhi, The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions, Boundary-Layer Meteorol. 74 (1995) 389–396.

    Google Scholar 

  • M. Maki,T. Harimaya andK. Kikuchi, Heat budget studies on nocturnal cooling in a basin, J. Meteorol. Soc. Japan 64 (1986) 727–740.

    Google Scholar 

  • P.J. Mason andJ.C. King, Measurements and predictions of flow and turbulence over an isolated hill of moderate slope, Q. J. Roy. Meteorol. Soc. 111 (1985) 627–640.

    Google Scholar 

  • P.J. Mason andR.I. Sykes, Flow over an isolated hill of moderate slope, Q. J. Roy. Meteorol. Soc. 105 (1979) 385–395.

    Google Scholar 

  • K. McKeen, Taming the city's man-made winds. Discover 5 (1984) 94–97

    Google Scholar 

  • J.L. McNaughton andP.G. Jarvis, Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski, T.T. (ed.) Water Deficits and Plant Growth., New York Academic Press. (1983) pp. 1–47.

  • K.G. McNaughton andP.G. Jarvis, Effects of spatial scale on stomatal control of transpiration. Agr. Forest Meteorol. 54 (1991) 279–301.

    Google Scholar 

  • R.E. Mickle,N.J. Cook andA.M. Hoff, The Askervein hill Project: Vertical profiles of wind and turbulence, Boundary-Layer Meteorol., 43 (1988) 143–169.

    Google Scholar 

  • C.H. Moeng andJ.C. Wyngaard, Statistics of conservative scalars in the convective boundary layer, J. Atmospheric. Sci. 41 (1984) 3161–3169.

    Google Scholar 

  • J.L. Monteith, Evaporation and the environment. Symp. Soc. Exp. Biology 19 (1965) 205–234.

    Google Scholar 

  • R.E. Morris,T.C. Meyers, User's guide for the urban Airshed Model, Volume 1: User's Manual for UAM(CB-IV). EPA-450/4–90–007A, U.S. Environmental Protection Agency, Research Triangle Park, NC (1990).

    Google Scholar 

  • P.J. Mulhearn andJ.J. Finnigan, Turbulent flow over a very rough, random surface, Bound. Layer Meteorol. 15 (1978) 109–132.

    Google Scholar 

  • National Ambient Air Quality Standards (NAAQS), 1997, U.S. Environmental Protection Agency

  • K. Nagel,S. Rasmussen andC.L. Barrett, Network Traffic as a Sel-Organized Critical Phenomena, LA-UR 96–659, Los Alamos National Laboratory, USA (1996).

    Google Scholar 

  • C.J. Nappo, Sporadic breakdowns of stability in the PBL over simple and complex terrain, Boundary-Layer Meteorol. 54 (1991) 69–87.

    Google Scholar 

  • F.T.M. Nieuwstadt andR.A. Brost. The decay of convective turbulence, J. Atmospheric. Sci. 43 (1986) 532–546

    Google Scholar 

  • D.O. Oberdorster,R.M. Gelein,J. Ferin andB. Weiss, Association of particulate air pollution and acute mortality; Involvement of ultrafine particles. Inhal. Toxicology 7 (1995) 111–124.

    Google Scholar 

  • T.R. Oke andF.G. Hannell, The form of the urban heat island in Hamilton, Canada. In: Urban Climates, WMO Tech. Note 108, No. 108 (1970) pp. 113–126.

  • T.R. Oke, The surface energy budgets of urban areas. Presented at the WMO Tech. Conf. on Urban Climat. and its Appl., with Special Regard to Tropical Area, Mexico City, Nov. 26–30 (1984).

  • R.T. Oke, The surface energy budget of urban areas. In: Modeling the Urban Boundary Layer, Am. Meteorol. Soc. (1987) pp. 2–51.

  • T.R. Oke, The heat island of the urban boundary layer: Characteristics, causes and effects. In: J.E. Cermak, A.D. Davenport, E.J. Plate, and D.X. Viegas (eds.) Wind Climate in Cities, pp. 801–807, NATO ASI Series E, Vol. 277, Kluwer Academic (1995) pp. 801–807.

  • M.K. O'Rourke et al., Building materials and importance of house dust mite exposure in the Sonoran Desert, Proceedings of the 6th In. Conf. On Indoor Air Quality, Helsinki (1993) pp. 4,155–160.

  • Y.D. Oyha,E. Neff andR.N. Meroney, Turbulence structure in a stratified boundary layer under stable conditions, Boundary-Layer Meteorol. 83 (1997) 139–161.

    Google Scholar 

  • A.C. Petersen,B. Cees,H. van Dop andP.G. Duynkerke, Mass-flux characteristics of reactive scalars in the convective boundary layer, J. Atmospheric. Sci. 56 (1999) 37–56.

    Google Scholar 

  • R.A. Pielke, Mesoscale Meteorology Modeling, Academic Press (1984) pp. 612.

  • R.A. Pielke,W.R. Cotton,R.L. Walko,C.J. Tremback,W.A. Lyons,L.D. Grasso,M.E. Nicholls,M.D. Moran,D.A. Wesley,T.J. Lee andJ.H. Copeland, A comprehensive meteorological modeling system-RAMS, Meteorol. Atmospheric. Phys., 49 (1992) 69–91.

    Google Scholar 

  • M. Piper,J.C. Wyngaard,W.H. Snyder andR.E. Jr. Lawson, Top-down, bottom-up diffusion experiments in a water convection tank, J. Atmospheric. Sci. 52 (1995) 3607–3619.

    Google Scholar 

  • A.D. Pendwarden andA.F.E. Wise, Wind environment around buildings, Building research Establishment Report, Her Majesty's Stationery Office, London, U.K. (1975) p. 52.

    Google Scholar 

  • J.M. Plaza,M. Pujadas andB. Artinano, Formation and transport of the Madrid ozone plume. J. Air & Waste Man. Assoc. 47 (1997) 766–774.

    Google Scholar 

  • J.S. Puttock andJ.C.R. Hunt, Turbulent diffusion from sources near obstacles with separated wakes-part I, and eddy diffusivity model, Atmospheric. Environ. 13 (1979) 1–13.

    Google Scholar 

  • Y. Qin andS.C. Kot, Dispersion of vehicular emission in street canyons, Guangzhou City, South China (P.R.C.), Atmospheric. Environ. 27B (1993) 283–291.

    Google Scholar 

  • M.R. Raupach, Influences of local feedback on land-air exchanges of energy and carbon. Global Change Bio. 4 (1998) 447–494.

    Google Scholar 

  • M.R. Raupach andJ.J. Finnigan, Single-layer models of evaporation from plant canopies are incorrect but useful, whereas multi-layer models are correct but useless: discussion. Australian J. Plant Phys. 15 (1988) 705–716.

    Google Scholar 

  • M.R. Raupach andA.S. Thom, Turbulence in and above plant canopies, Ann. Rev. Fluid Mech., 13 (1981) 97–129.

    Google Scholar 

  • S. Rafailidis, Influence of building areal density and roof shape on the wind characteristics above a town. Bound. Layer Meteorol. 85 (1997) 255–271.

    Google Scholar 

  • S. Rafailidis, Wind induced flows above buildings and inside street canyons: Building density, roof shape and arrangement effects. J. Fluid Mech., (2001) submitted.

  • S. Rafailidis andM. Schatzmann, Physical Modeling of car exhaust dispersion in urban street canyons-The effect of Slanted Roofs. In: S.E. Gryning andF. Schiermeier (eds.), Air Pollution Modelling and its Applications XI, Plenum Press, New York, (1996) pp. 653–654.

    Google Scholar 

  • L.W. Richards,C.L. Blanchard andD.L. Blumenthal (eds.), Navajo Generating Station visiblity final report. Rep. STI-90200–1124-FR, Sonoma Technology. Inc., Santa Rosa, CA (1991) 408 pp. [Available from Salt River Project, P. O. Box 52025, Phoenix, AZ 85072–2025].

    Google Scholar 

  • J.H. Schreffler, Detection of centripetal heat island circulations from tower data in St. Louis, Bound. Layer Meteorol. 15 (1978) 229–242.

    Google Scholar 

  • Y. Sasaki, Some basic formalisms in numerical variables analysis, Mon. Wea. Rev. 98 (1970) 875–883.

    Google Scholar 

  • C. Sherman, A mass-consistent model for wind fields over complex terrain, J. Appl. Meteorol. 17 (1978) 312–319.

    Google Scholar 

  • E.D. Siggia, High Rayleigh number convection, Ann. Rev. Fluid Mech. 26 (1994) 137–168.

    Google Scholar 

  • E.J. Simpson, Gravity currents in the environment and the laboratory, Cambridge University Press (1997).

  • W.S. Smith,J.M. Reisner,D.S. Decroix,M.J. Brown,R.H. Lee,S.T. Chan, andD.E. Stevens, A CFD model intercomparison and validation using high resolution wind tunnel data, 11th Conference on the Applications of Air Pollution Meteorology with A& WMA, 9–14 January, Long Beach, CA. (2000) 41–46.

  • W.H. Snyder,L.H. Khurshudyan,I.V. Nekrasov,R.E. Jr. Lawson andR.S. Thompson, Flow and dispersion of pollutants within two-dimensional valleys, Atmospheric. Environ. 25 (1990) 1347–1375.

    Google Scholar 

  • Z. Sorbjan, Decay of convective turbulence revisited, Boundary-Layer Meteorol. 82 (1997) 501–515.

    Google Scholar 

  • E.J. Strang andH.J.S. Fernando, Entrainment and mixing stratified shear flows, J. FluidMech. (2000) In Press.

  • R.B. Stull, An introduction to boundary layer meteorology, Kluwer Academic Publisher (1988) pp. 666.

  • P.A. Taylor,R.E. Mickle,J.R. Salmon andH.W. Teunissen, The Kettles Hill experiment-site description and mean flow results, Internal Report Aqrb–83–0020L, Atmospheric. Environ. Service, Downsview, Ont., Canada (1983).

  • A.A. Townsend, Self-preserving flow inside a turbulent boundary layer, J. Fluid Mech. 22 (1965) 773–797.

    Google Scholar 

  • A.A. Townsend, The flow in a turbulent boundary layer after a sudden change in surface roughness, J. Fluid Mech., 26 (1966) 255–266.

    Google Scholar 

  • D.B. Turner, Atmospheric dispersion modeling, a critical review, J. Air Pollut. Control Assoc. 29 (1979) 502–519.

    Google Scholar 

  • Z. Uchijima andJ.L. Wright, An experimental study of air flow in a corn plant air-layer, Bull. Natl. Inst. Agric. Sci. (Jpn) Ser. A11 (1964) 19–65.

    Google Scholar 

  • I. Uno,H. Ueda andS. Wakamatsu, Numerical modeling of the nocturnal urban boundary layer, Boundary-Layer Meteorol. 49 (1989) 77–98.

    Google Scholar 

  • A. Urano,T. Ichinose andK. Hanaki, Thermal environment simulation for three dimensional replacement of urban activity, J. Wind Eng. Ind. Aero. 81 (1999) 197–210.

    Google Scholar 

  • User's guide to CAL3QHC version 2.0, A modeling methodology for predicting pollutant concentrations near roadway intersections, EPA-454/R–92–006, U.S. Environmental Protection Agency (1994).

  • K.D. Van der Hout,H.P. Baars andN.J. Duijm, Effects of Buildings and Trees on Air Pollution by Road Traffic, T.N.O. Div. Of Technology for Society, P.O. Box 217, NL-2600 AE Delft, Netherlands, 6 (1989)

  • I. Vergeiner andE. Dreiseitl, Valley winds and slope winds-observations and elementary thoughts, Meteorol. Atmospheric. Phys. 36 (1987) 264–286.

    Google Scholar 

  • J.X.L. Wang andJ.K. Angell, Air stagnation climatology for the United States (1948–1998). NOAA/Air Resources Laboratory ATLAS No. 1 (1999).

  • Y.P. Wang,R. Leuning, A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I:Model description and comparison with a multi-layered model. Agr. Forest Meteorol. 91 (1998) 89–111.

    Google Scholar 

  • A.H. Weber andR.J. Kurzeja, Nocturnal planetary boundary layer structure and turbulence episodes during the Project STABLE field program, J. Appl. Meteorol. 30 (1991) 1117–1133.

    Google Scholar 

  • C.D. Whiteman, Morning transition tracer experiments in a deep narrow valley, J. Appl. Meteorol. 28 (1989) 625–635.

    Google Scholar 

  • C.D. Whiteman, Observations of thermally developed wind systems in mountainous terrain. In: W. Blumen (Ed.), Atmospheric Processes Over Complex Terrain, Meteorol. Monogr. 23(45), American Meteorology Society, Boston, Massachusetts (1990) pp. 5–42.

    Google Scholar 

  • C.D. Whiteman andS. Barr, Atmospheric mass transport by along-valley wind systems in a deep Colorado Valley, J. Climate Appl. Meteorol. 25 (1996) 1205–1212.

    Google Scholar 

  • C.D. Whiteman andJ.C. Doran, The relationship between overlying synoptic-scale flows and winds within a valley, J. Appl. Meteorol. 32 (1993) 1669–1682.

    Google Scholar 

  • C.D. Whiteman,T.B. McKee andJ.C. Doran, Boundary layer evolution within a canyon land basin, Part I: Mass, heat and moisture budgets from observations, J. Appl. Meteorol. 35 (1996) 2145–2161.

    Google Scholar 

  • D.J. Wilson andR.E. Britter, Estimates of building surface concentrations from nearby point sources, Atmospheric. Environ. 16 (1982) 2631–2646.

    Google Scholar 

  • K.K. Wong andR.A. Dirks, Mesoscale perturbations on airflow in the urban mixing layer, J. Appl. Meteorol. 17 (1978) 677–688

    Google Scholar 

  • S.C. Wong,I.R. Cowan,G.D. Farquhar, Stomatal conductance correlates with photosynthetic capacity, Nature 282 (1979) 424–426.

    Google Scholar 

  • P.H. Wood, Calculation of the neutral wind profile following a large step change in surface roughness, Q. J. Roy. Meteorol. Soc. 104 (1978) 383–392.

    Google Scholar 

  • M. Xue,K.K. Droegemeier,V. Wong,A. Shapiro andK. Brewster, ARPS Version 4.0 user's guide (1995) pp. 380.

  • T. Yamada, A numerical simulation of nocturnal drainage flow, J. Meteorol. Soc. Japan 59 (1981) 108–122.

    Google Scholar 

  • T. Yamada, Building and terrain effects in a mesoscale model, 11th Conference on the Applications of Air Pollution Meteorology with A& WMA, 9–14 January, Long Beach, CA (2000) pp. 215–220.

  • M.M. Zdravkovich, Interstitial flow in tube arrays: A series of formidable paradoxes. In: R.J. Perkins andS.E. Belcher, eds., Flow and Dispersion Through Groups of Obstacles Clarendon Press (1997) pp. 141–142.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernando, H., Lee, S., Anderson, J. et al. Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cities. Environmental Fluid Mechanics 1, 107–164 (2001). https://doi.org/10.1023/A:1011504001479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011504001479

Keywords

Navigation