Skip to main content
Log in

Tolerance of Gentianella campestris in relation to damage intensity: an interplay between apical dominance and herbivory

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Meristem allocation models suggest that the patterns of compensatory regrowth responses following grazing vary, depending on (i) the number of latent meristems that escape from being damaged, and (ii) the activation sensitivity of the meristems in relation to the degree of damage. We examined the shape of compensatory responses in two late-flowering populations (59°20′N and 65°45′N) of the field gentian. Plants of equal initial sizes were randomly assigned to four treatment groups with 0, 10, 50 and 75% removal of the main stalk. The plants were clipped before flowering, and their performance was studied at the end of the growing season. The northern population showed a linear decrease in shoot biomass and fecundity with increasing biomass removal, while the response in the southern population was quadratic with maximum performance at the damage level of 50% clipping. This nonlinear shape depended upon the activation sensitivity of dormant meristems in relation to their position along the main stem. The highest plant performance was achieved by inflicting intermediate damage which induced regrowth from basally located meristems. In contrast, the topmost branches took over the dominance role of the main stem after minor apical damage (10% clipping). Consequently, the breakage of apical dominance is a necessary precondition of vigorous regrowth in this species. However, compensation in the field gentian is unlikely to be a mere incidental by-product of apical dominance. The ability to regrow from basally located meristems that escape from being damaged by grazing may well be a sign of adaptation to moderate levels of shoot damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarssen, L.W. (1995) Hypotheses for the evolution of apical dominance in plants: implications for the interpretation of overcompensation. Oikos 74, 149-256.

    Google Scholar 

  • Aarssen, L.W. and Irwin, D.L. (1991) What selection: herbivory or competition. Oikos 60, 261-262.

    Google Scholar 

  • Alward, R.D. and Joern, A. (1993) Plasticity and overcompensation in grass responses to herbivory. Oecologia 95, 358-364.

    Article  Google Scholar 

  • Aronsson, M., Hallinbäck, T. and Mattsson, J-E. (1995) Rödlistade växter i Sverige 1995. Art-Databanken, Uppsala.

    Google Scholar 

  • Belsky, A.J. (1986) Does herbivory benefit plants? A review of the evidence. Am. Nat. 127, 870-892.

    Article  Google Scholar 

  • Benner, B.L. (1988) Effects of apex removal and nutrient supplementation on branching and seed production in Thlaspi arvense (Brassicaceae). Amer. J. Bot. 75, 645-651.

    Article  Google Scholar 

  • Bergelson, J. and Crawley, M.J. (1992a) Herbivory and Ipomopsis aggregata the disadvantages of being eaten. Am. Nat. 139, 870-882.

    Article  Google Scholar 

  • Bergelson, J. and Crawley, M.J. (1992b) The effects of grazers on the performance of individuals and populations of scarlet gilia, Ipomopsis aggregata. Oecologia 90, 435-444.

    Article  Google Scholar 

  • Bergelson, J., Juenger, T. and Crawley, M.J. (1996) Regrowth following herbivory in Ipomopsis aggregata: compensation but not overcompensation. Am. Nat. 148, 744-755.

    Article  Google Scholar 

  • Bryant, J.P., Chapin, F.S. and Klein, D.R. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368.

    CAS  Google Scholar 

  • Conover, W.J. and Iman, R.L. (1982) Analysis of covariance using the rank transformation. Biometrics 38, 715-724.

    Article  PubMed  CAS  Google Scholar 

  • Crawley, M.J. (1997) Life history and environment. In M.J. Crawley (ed.) Plant Ecology. Blackwell Science, Oxford, pp. 73-131.

    Google Scholar 

  • Escarré, J., Lepart, J. and Sentuc, J.J. (1996) Effects of simulated herbivory in three old field compositae with different inflorescence architectures. Oecologia 105, 501-508.

    Article  Google Scholar 

  • Geber, M.A. (1990) The cost of meristem limitation in Polygonum arenastrum: negative genetic correlations between fecundity and growth. Evolution 44, 799-819.

    Article  Google Scholar 

  • Georgiadis, N.J., Ruess, R.W., McNaughton, S.J. and Western, D. (1989) Ecological conditions that determine when grazing stimulates grass production. Oecologia 81, 316-322.

    Google Scholar 

  • Hallé, F. (1986) Modular growth in seed plants. Philos. Trans. R. Soc. Lond. B 313, 77-87.

    Google Scholar 

  • Hämet-Ahti, L., Suominen, J., Ulvinen, T. and Uotila, P. (eds) (1998) Retkeilykasvio (Field Flora of Finland). Finnish Museum of Natural History, Botanical Museum, Helsinki.

    Google Scholar 

  • Hendrix, S.D. and Trapp, E.J. (1989) Floral herbivory in Pastinaca sativa: do compensatory responses offset reductions in fitness. Evolution 43, 891-895.

    Article  Google Scholar 

  • Huhta, A-P. and Rautio, P. (1998) Evaluating the impacts of mowing: a case study comparing managed and abandoned meadow patches. Ann. Bot. Fenn. 35, 85-99.

    Google Scholar 

  • Huhta, A-P., Tuomi, J. and Rautio, P. (2000) Cost of apical dominance in two monocarpic herbs, Erysimum strictum and Rhinanthus minor. Can. J. Bot., 78, 591-599.

    Article  Google Scholar 

  • Hultén, E. and Fries, M. (1986) Atlas of North European Vascular Plants, North of the Trophic of Cancer. Koeltz Scientific Books, Königstein.

    Google Scholar 

  • Irwin, D.L. and Aarssen, L.W. (1996) Testing the cost of apical dominance in vegetation: a field study of three species. Ann. Bot. Fenn. 33, 123-128.

    Google Scholar 

  • Järemo, J., Nilsson, P. and Tuomi, J. (1996) Plant compensatory growth: herbivory or competition? Oikos 77, 238-247.

    Google Scholar 

  • Juenger, T. and Bergelson, J. (1997) Pollen and resource limitation of compensation to herbivory in scarlet gilia, Ipomopsis aggregata. Ecology 78, 1684-1695.

    Article  Google Scholar 

  • Juenger, T. and Bergelson, J. (2000) The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata; herbivore-imposed natural selection and the quantitative genetics of tolerance. Evolution 54, 764-777.

    Article  PubMed  CAS  Google Scholar 

  • Juenger, T., Lennartsson, T. and Tuomi, J. (2000). The evolution of tolerance to damage in Gentianella campestris: natural selection and the quantitative genetics of tolerance. Evol. Ecol. 14, 393-419 (this issue).

    Article  Google Scholar 

  • Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago.

    Google Scholar 

  • Kelly, D. (1989) Demography of short-lived plants in chalk grassland. I. Life-cycle variation in annuals and strict biennials. J. Ecol. 77, 747-769.

    Article  Google Scholar 

  • Lehtilä, K. (1999) Impact of herbivore tolerance and resistance on plant life histories. In T. Vuorisalo and P. Mutikainen, (eds) Life History Evolution in Plants. Kluwer Academic Publishers, Dordrecht, pp. 303-328.

    Google Scholar 

  • Lehtilä, K. and Syrjänen, K. (1995) Compensatory responses of two Melampyrum species after damage. Funct. Ecol. 9, 511-517.

    Article  Google Scholar 

  • Lennartsson, T. and Svensson, R. (1996) Patterns in the decline of three species of Gentianella in Sweden illustrating the deteoriation of semi-natural grasslands. Symb. Bot. Upsal. 31, 169-184.

    Google Scholar 

  • Lennartsson, T., Tuomi, J. and Nilsson, P. (1997) Evidence for the evolutionary history of over-compensation in the grassland biennial Gentianella campestris (Gentianaceae). Am. Nat. 149, 1147-1155.

    Article  Google Scholar 

  • Lennartsson, T., Nilsson, P. and Tuomi, J. (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology 79, 1061-1072.

    Article  Google Scholar 

  • Lennartsson, T., Oostermeijer, G.B., van Dijk, J. and Nijs, H.C.M. (2000) Ecological significance of floral reproductive traits in Gentianella campestris (Gentianaceae). Basic and Applied Ecology 1, 69-81.

    Article  Google Scholar 

  • Mabry, C.M. and Wayne, P.W. (1997) Defoliation of the annual herb Abutilon theophrasti: mechanisms underlying reproductive compensation. Oecologia 111, 225-232.

    Article  Google Scholar 

  • Maschinski, J. and Whitham, T.G. (1989) The continuum of plant responses to herbivory: the influence of plant association, nutrient availability and timing. Am. Nat. 134, 1-19.

    Article  Google Scholar 

  • McNaughton, S.J. (1979) Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat. 113, 691-703.

    Article  Google Scholar 

  • McNaughton, S.J. (1983) Compensatory plant growth as a response to herbivory. Oikos 40, 329-336.

    Google Scholar 

  • Montgomery, D.C. (1984) Design and Analysis of Experiments. 2nd edn. John Wiley and Sons, New York.

    Google Scholar 

  • Moorby, J. and Wareing, P.F. (1963) Ageing in woody plants. Annals of Botany 27, 293-309.

    Google Scholar 

  • Nilsson, P., Tuomi, J. and Åström, M. (1996a) Bud dormancy as a bet-hedging strategy. Am. Nat. 147, 269-281.

    Article  Google Scholar 

  • Nilsson, P., Tuomi, J. and Åström, M. (1996b) Even repeated grazing may select for overcompensation. Ecology 77, 1942-1946.

    Article  Google Scholar 

  • Oesterheld, M. (1992) Effect of defoliation intensity on aboveground and belowground relative growth rates. Oecologia 92, 313-316.

    Article  Google Scholar 

  • Oesterheld, M. and McNaughton, S.J. (1988) Intraspecific variation in the response of Themeda triandra to defoliation: the effect of time of recovery and growth rates on compensatory growth. Oecologia 77, 181-186.

    Article  Google Scholar 

  • Owen, D. and Wiegert, R.G. (1981) Mutualism between grasses and grazers: an evolutionary hypothesis. Oikos 36, 376-378.

    Google Scholar 

  • Påhlsson, L. (ed.) (1994) Öppen brukningsbetingad vegetation. In Vegetationstyper i Norden. TemaNord 1994: 665. Nordiska ministerrådet, Köpenhamn, pp. 381-457.

  • Paige, K.N. (1992) Overcompensation in response to mammalian herbivory: from mutualistic to antagonistic interactions. Ecology 73, 2076-2085.

    Article  Google Scholar 

  • Paige, K.N. (1994) Herbivory and Ipomopsis aggregata: differences in response, differences in experimental protocol: a reply to Bergelson and Crawley. Am. Nat. 143, 739-749.

    Article  Google Scholar 

  • Paige, K.N. (1999) Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation. Oecologia 118, 316-323.

    Article  Google Scholar 

  • Paige, K.N. and Whitham, T.G. (1987) Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am. Nat. 129, 407-416.

    Article  Google Scholar 

  • Preston, K.A. (1998) Architectural constraints on flower number in a photoperiodic annual. Oikos 81, 279-288.

    Google Scholar 

  • Prins, A.H., Verkaar, H.J. and Van Den Herik, M. (1989) Responses of Cynoglossum officinale L. and Senecio jacobaea to various degrees of defoliation. New Phytologist 111, 725-731.

    Article  Google Scholar 

  • Rassi, P., Kaipiainen, H., Mannerkoski, I. and Ståhls, G. (1991) Uhanalaisten kasvien ja eläinten seurantakomitean mietintö (Report on the monitoring of threatened animals and plants in Finland). Committee Report 1991: 30, Min. Env., Helsinki.

    Google Scholar 

  • Reichman, O.J. and Smith, S.C. (1991) Responses to simulated leaf and root herbivory by a biennial Tragopogon dubius. Ecology 72, 116-124.

    Article  Google Scholar 

  • Sachs, T. 1999. Node counting: an internal control of balanced vegetative and reproductive development. Plant, Cell and Environment 22, 757-766.

    Article  Google Scholar 

  • Saville, D.J. (1990) Multiple comparison procedures: the practical solution. The American Statistician 44, 174-180.

    Article  Google Scholar 

  • Sokal, R.R. and Rolf, F.J. (1995) Biometry. 3rd edn. W.H. Freeman and Company, New York.

    Google Scholar 

  • Stephenson, W.R. and Jacobson, D. (1988) A comparison of nonparametric analysis of covariance techniques. Communications in Statistics, Simulation and Computation 17, 451-461.

    Google Scholar 

  • Suzuki, T. (1990) Apical control of lateral bud development and shoot growth in mulberry (Morus alba). Physiol. Plant. 80, 350-356.

    Article  Google Scholar 

  • Tollrian, R. and Harvell, C.R. (1999) The Ecology and Evolution of Inducible Defences. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tuomi, J., Nilsson, P. and Åström, M. (1994) Plant compensatory responses: bud dormancy as an adaptation to herbivory. Ecology 75, 1429-1436.

    Article  Google Scholar 

  • Venecz, J.I. and Aarssen, L.W. (1998) Effects of shoot apex removal in Lythrum salicaria (Lythraceae): assessing the costs of reproduction and apical dominance. Ann. Bot. Fenn. 35, 101-111.

    Google Scholar 

  • Verkaar, H.J., van der Meijden, E. and Breebart, L. (1986) The responses of Cynoglossum officinale L. and Verbascum thapsus L. New Phytologist 104, 121-129.

    Article  Google Scholar 

  • Wegener, C. and Odasz, A.M. (1997) Effects of laboratory simulated grazing on biomass of the perennial Arctic grass Dupontia fisheri from Svalbard: evidence of overcompensation. Oikos 79, 496-502.

    Google Scholar 

  • Whitham, T.G., Maschinski, J., Larson, K.C. and Paige K.N. (1991) Plant responses to herbivory: the continuum from negative to positive and the underlying physiological mechanisms. In P.W. Price, T.W. Lewinsohn, G.W. Fernandes and W.W. Benson, (eds) Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley and Sons, New York, pp. 227-256.

    Google Scholar 

  • Zar, J.H. (1996) Biostatistical Analysis. 3rd edn. Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Zieslin, N. and Halevy, A.H. (1976) Components of axillary bud inhibition in rose plants. 1. The effect of different plant parts (correlative inhibition). Bot. Gaz. 137, 291-296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huhta, AP., Lennartsson, T., Tuomi, J. et al. Tolerance of Gentianella campestris in relation to damage intensity: an interplay between apical dominance and herbivory. Evolutionary Ecology 14, 373–392 (2000). https://doi.org/10.1023/A:1011028722860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011028722860

Navigation