Skip to main content
Log in

Gene expression during heat-shock in embryogenic carrot cell lines

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

We have isolated an hsp90 gene from carrot (Daucus carota). The deduced amino acid sequence from this cDNA revealed its similarity to the organelle-type HSP90 protein. It has high homology to other plant organelle-isoforms and shows similar homology to both cytoplasmic and prokaryotic HSP90s. To study the regulation of gene expression during heat-shock, two embryo-specific DC8 and DC59 genes, a tubulin gene and an hsp90 gene were monitored in two embryogenic heat-stressed carrot cell lines. The expression of DC8, a LEA and DC59, an oleosin gene, decreased in both cell lines. In addition, there was a progressive degradation of the accumulated messages with time. The expression of hsp90 gene was induced in both cell lines but with a different pattern of transcript accumulation. These results indicate that the haploid cell line responds differently from the diploid cell line and there is differential transcriptional activity in both cell lines during heat-stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almoguera C & Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored lowmolecular-weight heat-shock protein and Lea mRNAs. Plant Mol. Biol. 19: 781-792

    Article  PubMed  CAS  Google Scholar 

  • Almoguera C, Prieto-Dapena P & Jordano J (1998) Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements. Plant J. 13: 437-446

    Article  PubMed  CAS  Google Scholar 

  • Apuya N & Zimmerman JL (1992) Heat shock gene regulation is controlled primarily at the translational level in carrot cells and somatic embryos. Plant Cell 4: 657-665

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M & Bonner JJ (1979) The induction of gene activity in Drosophila by heat-shock. Cell 17: 241-254

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA & Craig EA (1987) Eukaryotic Mr 83000 heat-shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 5177-5181

    Article  PubMed  CAS  Google Scholar 

  • Binarova P, Hause G, Cenklova V, Cordewener JHG & van Lookeren Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod. 10: 200-208

    Article  Google Scholar 

  • Borkovich KA, Farrelly FW, Finelstein DB, Taulien J & Lindquist S (1989) HSP82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9: 3919-3930

    PubMed  CAS  Google Scholar 

  • Carranco R, Almoguera C & Jordano J (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress J. Biol. Chem. 272: 27470-27475

    Google Scholar 

  • Church G & Gilbert W (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995

    Article  PubMed  CAS  Google Scholar 

  • Coca MA, Almoguera C & Jordano J (1994) Expression of sun-flower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol. Biol. 25: 479-492

    Article  PubMed  CAS  Google Scholar 

  • Cordewener JHG, Hause G, Gorgen E, Busink R, Hause B, Dons JJM, van Lammeren AAM & van Lookeren Campagne MM (1995) Changes in synthesis and localization of the 70 kDa class of heat shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta 196: 747-755

    Article  CAS  Google Scholar 

  • Conner TW, LaFayette PR, Nagao RT & Key JL (1990) Sequence and expression of a HSP83 from Arabidopsis thaliana. Plant Physiol. 94: 1689-1695

    PubMed  CAS  Google Scholar 

  • Dong J-Z & Dunstan DI (1996) Characterization of three heatshock-protein genes and their developmental regulation during somatic embryogenesis in white spruce [Picea glauca (Moench) Voss]. Planta 200: 85-91

    Article  PubMed  CAS  Google Scholar 

  • Franz G, Hatzopoulos P, Jones TJ, Krauss M & Sung RZ (1989) Molecular and genetic analysis of an embryonic gene DC8, from Daucus carota L. Mol. Gen. Genet. 218: 143-151

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA & Ojima K (1968) Nutritional requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158

    Article  PubMed  CAS  Google Scholar 

  • Gasc JM, Renoir JM, Faber LE, Delahaye F & Baulieu EE (1990) Nuclear localization of two steroid receptor-associated proteins, HSP90 and p59. Exp. Cell Res. 186: 362-367

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz TJP, Allison AL & Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16: 4041-4048

    Article  PubMed  CAS  Google Scholar 

  • Hatzopoulos P, Franz G, Choy L & Sung RZ (1990) Interaction of nuclear factors with upstream sequences of a lipid-body membrane protein gene from carrot. Plant Cell 2: 457-467

    Article  PubMed  CAS  Google Scholar 

  • Hubel A & Schoffl F (1994) Arabidopsis heat-shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol. Biol. 26: 353-362

    Article  PubMed  CAS  Google Scholar 

  • Isono K, Shimizu M, Yoshimoto K, Niwa Y, Satoh K, Yokota A & Kobayashi H (1997) Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of σ70 factors of bacterial RNA polymerases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94: 14948-14953

    Article  PubMed  CAS  Google Scholar 

  • Koning AJ, Rose R & Comai I (1992) Developmental expression of tomato heat-shock cognate protein 80. Plant Physiol. 100: 801-811

    PubMed  CAS  Google Scholar 

  • Lewin B (1997) Genes VI (pp 309-317). Oxford University Press, Oxford

    Google Scholar 

  • Lindquist S & Graig EA (1988) The heat-shock proteins. Annu. Rev. Genet. 22: 631-677

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF & Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Marrs KA, Casey ES, Capitant SA, Bouchard RA, Dietrich PS, Mettler IJ & Sinibaldi RM (1993) Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis and pollen development. Dev. Genet. 14: 27-41

    Article  PubMed  CAS  Google Scholar 

  • Milioni D & Hatzopoulos P (1997) Genomic organization of hsp90 gene family in Arabidopsis. Plant Mol. Biol. 35: 955-962

    Article  PubMed  CAS  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15: 473-497

    Article  CAS  Google Scholar 

  • Pitto L, Lo Schiavo F, Giuliano G & Terzi M (1983) Analysis of heat-shock protein pattern during somatic embryogenesis of carrots. Plant Mol. Biol. 2: 231-237

    Article  CAS  Google Scholar 

  • Rabindran S, Haroun R, Clos J, Wisniewski J & Wu C (1993) Regulation of heat-shock factor trimer formation: role of the conserved leucine zipper. Science 259: 230-234

    PubMed  CAS  Google Scholar 

  • Reddy RK, Chaudhary S, Patil P & Krishna P (1998) The 90 kDa heat shock protein (hsp90) is expressed throughout Brassica napus seed development. Plant Sci. 131: 131-137

    Article  CAS  Google Scholar 

  • Rojas A, Almoguera C & Jordano J (1999) Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. Plant J. 20: 601-610

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467

    Article  PubMed  CAS  Google Scholar 

  • Schmitz G, Schmidt M & Feierabend J (1996) Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression. Plant Mol. Biol. 30: 479-492

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Furner I & Sung RZ (1981) Nutritional and karyotypic characterization of a haploid cell culture of Daucus carota L. In vitro 17: 315-321

    Google Scholar 

  • Sung RZ (1976) Turbidimetric determination of plant cell culture growth. Plant Physiol. 57: 460-462

    Article  PubMed  Google Scholar 

  • von Heijne G, Steppuhn J & Herrmann RG (1989) Domain structure of mitochondria and chloroplast targeting peptides. Eur. J. Biochem. 180: 535-545

    Article  PubMed  CAS  Google Scholar 

  • Wehmeyer N & Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance Plant Phys. 122: 1099-1108

    CAS  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schoeffl F & Heberle-Bors E (1995) The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ. 18: 139-147

    Article  CAS  Google Scholar 

  • Ziemiecki A, Catelli MG, Joab I & Moncharmont B (1986) Association of the heat-shock protein HSP90 with steroid hormone receptors and tyrosine kinase oncogene products. Biochem. Biophys. Res. Comm 138: 1298-1307

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL, Apuya N, Darwish K & O'Carroll C (1989) Novel regulation of heat-shock genes during carrot somatic embryo development Plant Cell 1: 1137-1146

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Baler F, Dahl G & Voellmy R (1994) Activation of the DNAbinding ability of human heat-shock transcription factor 1 may involve the transition from intramolecular triple-stranded coiledcoil structure. Mol. Cell Biol. 14: 7557-7568

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polydefkis Hatzopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milioni, D., Franz, G., Sung, R. et al. Gene expression during heat-shock in embryogenic carrot cell lines. Plant Cell, Tissue and Organ Culture 65, 221–228 (2001). https://doi.org/10.1023/A:1010682727353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010682727353

Navigation