Skip to main content
Log in

Mycorrhizal dependency and growth responses of Acacia nilotica and Albizzia lebbeck to inoculation by indigenous AM fungi as influenced by available soil P levels in a semi-arid Alfisol wasteland

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

A series of available phosphorus (Olsen) levels ranging from 10 to 40 ppm were achieved in a semi-arid soil. The influence of the levels of phosphorus on the symbiotic interaction between two subtropical tree species, Acacia nilotica and Albizzia lebbeck, and a mixed inoculum of indigenous arbuscular mycorrhizal (AM) fungi was evaluated in a greenhouse study. The extent to which the plant species depended on AM fungi for dry matter production decreased as the levels of soil P increased, but the degree of this decrease differed in the two species tested. Acacia nilotica colonized by AM fungi showed a significant increase in shoot P and dry matter at a soil P level of 10 ppm whereas in Albizzia lebbeck, such increase occurred at 20 ppm. Mycorrhizal inoculation response disappeared beyond soil P levels of 25 ppm in Acacia nilotica and 30 ppm in Albizzia lebbeck. Levels of soil P greater than 25 ppm suppressed AM fungus colonization in both species. Soil P levels of 30 and 40 ppm and 40 ppm caused negative mycorrhizal dependencies (MD) in Acacia nilotica and Albizzia lebbeck respectively. Values of MD for both species were negatively correlated with soil P levels. Based on the MD values, regression equations were developed to predict MD for given levels of available P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot, L.K. and Robson, A.D. 1982. The role of vesicular-arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust. J. Agric. Res. 33: 389-408.

    Google Scholar 

  • Baermann, B. and Linderman, R.G. 1981. Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytol. 87: 63-67.

    Google Scholar 

  • Bhatia, N.P., Adholeya, A. and Sharma, A. 1998. Biomass production and changes in soil productivity during long term cultivation of Prosopis juliflora (Swartz) DC inoculated with VA mycorrhiza and Rhizobium spp. in a semi arid wasteland. Biol. Fertil. Soils. 26: 208-214.

    Google Scholar 

  • Bolan, N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134: 189-207.

    Google Scholar 

  • Cornet, F., Diem, H. G. and Dommergues, Y. R. 1982. Effet de inoculation avec Glomus mosseae sur la croissance d'Acacia holosericea en pepiniere et apres transplantation sur le terrain. pp. 287-293. In: Gianinazzi, S., Gianinazzi-Pearson, V. and Trouvelot, S. (Eds.) Les Mycorrhizes: Biologie et Utilisation. INRA Press, Paris.

    Google Scholar 

  • Datta, N.P., Khera, M.S. and Saini, T.R. 1962. A rapid calorimetric procedure for the determination of the organic carbon in soils. J. Indian Soc. Soil Sci. 10: 67-74.

    Google Scholar 

  • Declerck, S., Plenchette, C. and Strullu, D.G. 1995. Mycorrhizal dependency of Banana (Musa acuminata, AAA group) cultivar. Plant and Soil 176: 183-187.

    Google Scholar 

  • Dixon, R.K., Mukerji, K.G., Chamola, B.P. and Kaushik, A. 1997. Vesicular-arbuscular mycorrhizal symbiosis in relationship to forestation in arid lands. Ann. For. 5(1): 1-9.

    Google Scholar 

  • Fox, R.L. 1981. External phosphorus requirement of crops. pp. 223-239. In: Dowdy, R.H., Ryan, J.A., Volk, V.V. and Baker, D.E. (Eds.) Chemistry in the Soil Environment. Am. Soc. Agronomy, Madison, WI.

    Google Scholar 

  • Gaur, A., Adholeya, A. and Mukerji, K.G. 1998. A comparison of AM fungi inoculants using Capsicum and Polianthes in marginal soil amended with organic matter. Mycorrhiza 7: 307-312.

    Google Scholar 

  • Gerdemann, J.W. 1975. Vesicular-arbuscular mycorrhizae. pp. 575-559. In: Torrey, J.G. and Clarkson, D.T. (Eds.) The Development and Function of Roots. Academic Press, London.

    Google Scholar 

  • Gerdemann, J.W. and Nicolson, T.H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46: 235-244.

    Google Scholar 

  • Habte, M. and Manjunath, A. 1987. Soil solution phosphorus status and mycorrhizal dependency in Leucaena leucocephala. Appl. Environ. Microbiol. 84: 489-500.

    Google Scholar 

  • Habte, M. and Turk, D. 1991. Response of two species of Cassia and Gliricidia sepium to vesicular-arbuscular mycorrhizal infection. Commun. Soil Sci. Plant Anal. 22: 1861-1872.

    Google Scholar 

  • Habte, M. and Manjunath, A. 1991. Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1: 3-12.

    Google Scholar 

  • Janos, D.P. 1983. Tropical mycorrhizas, nutrient cycles and plant growth. pp. 327-345. In: Sutton, S.L., Whitmore, T.C. and Chadwick, A.C. (Eds.) Tropical Rain Forest: Ecology and Management. British Ecological Society Special Publication No. 2. Blackwell Scientific, Oxford, UK.

    Google Scholar 

  • Jasper, D.A., Abbot, L.K. and Robson, A.D. 1989. Acacias respond to additions of phosphorus and to inoculation with VA-mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant and Soil 115: 99-108.

    Google Scholar 

  • Khaliel, A.S. 1988. Incidence of AM in some desert plants and correlation with edaphic factors. pp. 55-59. In: Mahadevam, A., Raman, N. and Natrajan, K. (Eds.) Mycorrhizal for Green Asia. Proceeding of 1st Asian conference on mycorrhizae, CAS in Botany, Madras.

  • Kitson, R.E. and Mellon, M.G. 1944. Colorimetric determination of phosphorus as molybdivanado phosphoric acid Ind. Eng. Chem. Anal. Ed. 16: 379-383.

    Google Scholar 

  • Kitt, D.G., Hetrick, B.A.D. and Wilson, G.W.T. 1988. Relationship of soil fertility to suppression of the growth response of mycorrhizal big bluestem in non-sterile soil. New Phytol. 109: 473-481.

    Google Scholar 

  • Linderman, R.G. and Hendrix, J.W. 1982. Evaluation of plant response to colonization by vesicular-arbuscular mycorrhizal fungi. pp. 69-76. In: Schenck, N.C. (Ed.) Methods and Principles of Mycorrhizal Research. Am. Phytopathol. Soc., St. Paul, MN.

    Google Scholar 

  • Manjunath, A. and Habte, M. 1992. External and Internal P requirements of plant species differing in their mycorrhizal dependency. Arid Soil Res. Rehabil. 6: 271-284.

    Google Scholar 

  • Medina, O.A., Kretschmer, A.E. Jr. and Sylvia, D. M. 1990. Growth response of fieldgrown Siratro (Macroptilium Atropurpureum Urb.) and Aeschynomene americana L. to inoculation with selected vesicular-arbuscular mycorrhizal fungi. Biol. Fertil. Soils. 9: 54-60.

    Google Scholar 

  • Menge, J.A., Johnson, E.L.V. and Platt, R.G. 1978. Mycorrhizal dependency of citrus cultivars under three nutrient regimes. New Phytol. 81: 553-559.

    Google Scholar 

  • Miyasaka, S.C., Habte, M. and Matsuyama, D.T. 1993. Mycorrhizal dependency of two Hawaiian endemic tree species: Koa and Mamane. J. Pl. Nutri. 16: 1339-1356.

    Google Scholar 

  • Mosse, B. 1973. Advances in the study of vesicular arbuscular mycorrhiza. Ann. Rev. Phytopathol. 11: 171-196.

    Google Scholar 

  • Mosse, B., Hayman, D.S. and Arnold, D.J. 1973. Plant growth responses to vesiculararbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled with 32P. New Phytol. 72: 809.

    Google Scholar 

  • Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Circular 939 US Department of Agriculture, Washington, DC.

    Google Scholar 

  • Phillips, J.M. and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161.

    Google Scholar 

  • Plenchette, C., Fortin, J.A. and Furlan, V. 1983. Growth response of several plant species to mycorrhiza in a soil of moderate P fertility, I: Mycorrhizal dependency under field conditions. Plant and Soil 70: 191-209.

    Google Scholar 

  • Ram Prasad, 1988. Technology of Wastelands Development. Associated Publishing Co. New Delhi, p. 356.

    Google Scholar 

  • Rattan, A., Sharma, M.P., Chauhan, S.P. and Adholeya, A. 1998. Variation in the propagule density of vesicular arbuscular mycorrhizal fungi at rehabilitated waterlogged sites. Journal of Tropical Forest Sci. 10: 542-551.

    Google Scholar 

  • Ross, J.P. and Harper, J.P. 1970. Effect of Endogone mycorrhiza on soybean yields. Phytopathol. 60: 1552-1556.

    Google Scholar 

  • SAS Institute Inc. 1991 SAS/STAT User's Guide, Release 6.03. SAS Institute Inc., Cary, N.C.

    Google Scholar 

  • Sharma, M.P., Gaur, A., Bhatia, N.P. and Adholeya, A. 1996. Growth responses and dependence of Acacia nilotica var. Cupressiformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6: 441-446.

    Google Scholar 

  • Wealth of India (1985) A dictionary of Indian raw materials and industrial products. Raw Materials, Vol. 1: A Publications and Information Directorate CSIR, New Delhi.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M.P., Bhatia, N.P. & Adholeya, A. Mycorrhizal dependency and growth responses of Acacia nilotica and Albizzia lebbeck to inoculation by indigenous AM fungi as influenced by available soil P levels in a semi-arid Alfisol wasteland. New Forests 21, 89–104 (2001). https://doi.org/10.1023/A:1010636614005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010636614005

Navigation