Skip to main content
Log in

Oxidation of Amorphous Co75.26−xFe4.74(BSi)20+x Magnetic Alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation characteristics of the Co-rich amorphous magnetic alloy, \({\text{Co}}_{75.26 - x} {\text{Fe}}_{{\text{4}}{\text{.74}}} \left( {{\text{BSi}}} \right)_{20 + x}\) were investigated. A TEM study of the microstructure revealed a complex oxidation behavior of the alloy depending on composition, especially the boron and silicon concentrations. It was determined that the critical concentration of the metalloid to be 21 at.% above, which a continuous layer of an amorphous borosilicate phase formed on the surface. Phase separation of the surface oxide was also observed when the composition is rich in boron. The metalloid (boron and silicon) concentration was critical in determining the surface-oxide morphology, which in turn, affected the subsurface microstructure. As the magnetization behavior of the Co-rich amorphous alloy depends upon the surface oxide and the internal-oxide precipitates, the guidelines are provided by which one can engineer the microstructure of the alloy to optimize the magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Warlimont, in New Magnetic Materials by Rapid Solidification, S. Steeb and H. Warlimont, eds. (Elsevier, New York, 1985), pp. 1599–1609.

    Google Scholar 

  2. K. Mohri, in Amorphous Metal Sensor, A. Hernando, V. Madurga, M. C. Sanchez-Trujillo, and M. Vasquez, eds. (Elsevier, New York, 1987), pp. 360–366.

    Google Scholar 

  3. G. Herzer and H. R. Hilzinger, Amorphous Metal Sensor, pp. 354–359 (1987).

  4. G. E. Fish, Proc. IEEE, 78, 947–972 (1990).

    Google Scholar 

  5. L. Henderson, R. C. O'Handley, and B. L. Averbach, J. Magn. Magn. Mater. 87, 142–146 (1990).

    Google Scholar 

  6. Y. C. Kuo, L. S. Zhang, and W. K. Zhang, J. Appl. Phys. 52, 1889–1891 (1981).

    Google Scholar 

  7. B. Predel, Key Eng. Mater. 40, 17–38 (1990).

    Google Scholar 

  8. U. Koster, Mater. Sci. Eng. 97, 233–239 (1988).

    Google Scholar 

  9. M. Millan, J. Leal, and A. Conde, Mater. Lett. 14, 227–231 (1992).

    Google Scholar 

  10. P. Duhai, P. Svec, M. Durcekova, and G. Vlasak, Mater. Sci. Eng. 97, 337–341 (1988).

    Google Scholar 

  11. U. Koster, B. Punge-Witteler, and G. Steinbrink, Key Eng. Mater. 40, 53–62 (1990).

    Google Scholar 

  12. U. Koster, Proc. '87 Conf. Phase Transformations, pp. 597–603 (1988).

  13. C. K. Kim, Mater. Sci. Eng. B40, 10–18 (1996).

    Google Scholar 

  14. C. Wagner, Z. Elektrochem. 63, 772–782 (1959).

    Google Scholar 

  15. C. Wagner, J. Electrochem. Soc. 99, 369–380 (1952).

    Google Scholar 

  16. Phase Equilibria Diagrams Database Ver. 2.1, NIST standard reference database 31, 1994.

  17. E. M. Levin, Phase Diagram, Vol. 3, The Use of Phase Diagrams in Electronic Materials and Glass Technology (Academic Press, New York, 1970), pp. 144–233.

    Google Scholar 

  18. R. Charles and F. E. Wagstaff, J. Amer. Cer. Soc. 51, 16–20 (1968).

    Google Scholar 

  19. F. A. Hummel, Introduction to Physical Equilibra in Ceramic Systems (Marcel Dekker, New York, 1984), p. 107.

    Google Scholar 

  20. C. K. Kim and R. C. O'Handley, J. Microsc. 180, 70–79 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.K., Yoon, C.S., Byun, T.Y. et al. Oxidation of Amorphous Co75.26−xFe4.74(BSi)20+x Magnetic Alloy. Oxidation of Metals 55, 177–187 (2001). https://doi.org/10.1023/A:1010386408279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010386408279

Navigation