Skip to main content
Log in

Simulations of Composite Electrodes in Fuel Cells

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Approaches to models and computer simulations of conductivity, polarization resistance, and impedance of composite electrodes in solid oxide fuel cells (SOFC) are reviewed with respect to the more important experimental findings. The approaches are classified according to how they model the highly disordered structure of composite SOFC electrodes: As corrugated layers of electrode material covered by a thin film of electrolyte or vice versa (thin film model), as a random packing of particles (Monte Carlo calculations), or using a macroscopic, averaged description of the disordered electrode structure (macroscopic porous-electrode model). Thin film models appear to be useful rationalizations of some experimental measurements of polarization resistance, but in the stricter sense fail to predict a number of important electrode characteristics. The Monte Carlo method, on the other hand, apparently meets with most of the more prominent experimental results reported so far, although some issues concerning parameter choices, among other things, remain to be resolved. The macroscopic porous-electrode theory may serve as a useful simplification of the Monte Carlo method, but with a more limited scope. Modeling of composite electrodes for SOFC thus appears to have reached a level where it can be used for practical engineering applications. As an example of this, the rate of methane reforming at Ni-YSZ cermet anodes under current load is calculated using the framework of the macroscopic porous-electrode theory, modified to include non-linear kinetics and gas-phase diffusion. The reforming reaction is quite evenly distributed in the anode, and its overall rate is therefore strongly dependent on thickness. However, most of the electrochemical reaction is likely to occur in a region closer than 10 μm to the bulk electrolyte. For an anode thickness larger than this, the current-collector potential at a given current is by and large independent of thickness. The ratio between the rates of the reforming and the electrochemical reactions can therefore be balanced to a certain degree by optimizing thickness, without significant loss in cell power. In addition, cermet porosity, volume fraction of Ni and Ni-particle size, appears to have a moderate effect in controlling the rate balance, which will have to be manipulated within the constraints set by the requirement of percolation in the gas-phase and the Ni- and YSZ-networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Stoddard, in Power Plant Engineering, edited by L.F. Drbal, P.G. Boston, K.L. Westra and R.B. Erickson (Chapman & Hall, New York, 1996), p. 781.

    Google Scholar 

  2. A. Hammou, in Advances in Electrochemical Science and Engineering 2, edited by H. Gerischer and C.W. Tobias (VCH, Weinheim, 1992), p. 87.

    Google Scholar 

  3. N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells (Elsevier, Amsterdam, 1995).

    Google Scholar 

  4. D.W. Dees, T.D. Claar, T.E. Easler, D.C. Fee, and F.C. Mrazek, J. Electrochem. Soc., 134, 2141 (1987).

    Google Scholar 

  5. T. Saito, in Proc. 1991 IEA SOFC Workshop, Oslo, Norway, August 18-23, edited by B. Thorstensen (Senter for Industriforskning, Oslo, 1991) p. 97. (b) T. Saito, in SOFC Micromodelling edited by L. Dubal (International Energy Agency, Bern, 1992) p. 21. (c) T. Saito, Y. Akiyama, N. Ishida, T. Yasuo, S. Taniguchi, S. Murakami and N. Furukawa, Denki Kagaku, 61, 228 (1993).

    Google Scholar 

  6. T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, M. Mori, and T. Iwata, J. Electrochem. Soc., 137, 3042 (1990).

    Google Scholar 

  7. T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, M. Mori, and T. Iwata, Solid State Ionics, 40/41, 402 (1990).

    Google Scholar 

  8. W. Huebner, H.U. Anderson, D.M. Reed, S.R. Sehlin, and X. Deng, in Solid Oxide Fuel Cells IV, edited by M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal (PV 95-1, The Electrochemical Society Proceedings Series, Pennington, NJ, 1995), p. 696.

  9. M. Mogensen and T. Lindegaard, in Solid Oxide Fuel Cells edited by S.C. Singhal and H. Iwahara (PV 93-4, The Electrochemical Society Proceedings Series, Pennington, NJ, 1993), p. 484.

  10. M. Mogensen, in High Temperature Electrochemical Behavior of Fast Ion and Mixed Conductors, edited by F.W. Poulsen, J.J. Bentzen, T. Jacobsen, E. Skou, and M.J.L. Østergård (Proc. 14th RisØ International Symposium on Materials Science, RisØ 1993), p. 117.

  11. M. Mogensen, S. Primdahl, J.T. Rheinländer, S. Gormsen, S. Linderoth, and M. Brown, in Solid Oxide Fuel Cells IV, edited by M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal (PV 95-1, The Electrochemical Society Proceedings Series, Pennington, NJ, 1995), p. 657.

  12. M. Mogensen and S. Skaarup, Solid State Ionics, 86-88, 1151 (1996).

    Google Scholar 

  13. T. Shirakawa, S. Matsuda, and A. Fukushima, in Solid Oxide Fuel Cells edited by S.C. Singhal and H. Iwahara, (PV 93-4, The Electrochemical Society Proceedings Series, Pennington, NJ, 1993), p. 464.

  14. A. Tintinelli, C. Rizzo, G. Giunta, and A. Selvaggi, in Proceedings of the 1st European SOFC Forum, edited by Ulf Bossel, 1 (Lucerne, Switzerland, 1994), p. 455.

  15. E. Ivers-Tiffée, W. Wersing, M. Schieß l, and H. Greiner, Ber. Bunsenges. Phys. Chem., 94, 978 (1990).

    Google Scholar 

  16. I. Yasuda, T. Kawashima, T. Koyama, Y. Matsuzaki, and T. Hikita, Proceedings of the International Fuel Cell Conference February 3-6, 1992, Makuhari, Japan, 357 (1992).

  17. T. Kenjo, S. Osawa, and K. Fujikawa, J. Electrochem. Soc., 138, 349 (1991).

    Google Scholar 

  18. T. Kenjo and M. Nishiya, Solid State Ionics, 57, 295 (1992).

    Google Scholar 

  19. S. Sunde, J. Electrochem. Soc., 142, L50 (1995).

    Google Scholar 

  20. M. Juhl, S. Primdahl, C. Manon, and M. Mogensen, J. Power Sources, 61, 173 (1996).

    Google Scholar 

  21. C.W. Tanner, K.-Z. Fung, and A.V. Virkar, J. Electrochem. Soc., 144, 21 (1997).

    Google Scholar 

  22. S. Sunde, J. Electrochem. Soc., 143, 1123 (1996).

    Google Scholar 

  23. S. Sunde, J. Electrochem. Soc., 143, 1930 (1996).

    Google Scholar 

  24. S. Sunde, Electrochimica Acta, 42, 2637 (1997).

    Google Scholar 

  25. P. Costamagna, P. Costa, and V. Antonucci, Electrochimica Acta, 43, 375 (1997).

    Google Scholar 

  26. P. Costamagna, P. Costa, and E. Arato, Electrochimica Acta, 43, 967 (1997).

    Google Scholar 

  27. H. Itoh, T. Yamamoto, M. Mori, T. Watanabe, and T. Abe, Denki Kagaku, 64, 549 (1996).

    Google Scholar 

  28. J. Mizusaki, H. Tagawa, K. Tsuneyoshi, and A. Sawata, J. Electrochem. Soc., 138, 1867 (1991).

    Google Scholar 

  29. M.J.L. Østergård, C. Clausen, C. Bagger, and M. Mogensen, Electrochimica Acta, 40, 1971 (1995).

    Google Scholar 

  30. L.S. Wang and S.A. Barnett, J. Electrochem. Soc., 139, 1134 (1992).

    Google Scholar 

  31. L.S. Wang and S.A. Barnett, Solid State Ionics, 76, 103 (1995).

    Google Scholar 

  32. C.-H. Lee, C.-H. Lee, H.-Y. Lee, and S.M. Oh, Solid State Ionics, 98, 39 (1997).

    Google Scholar 

  33. C.H. Bennett, J. Appl. Phys., 43, 2727 (1972).

    Google Scholar 

  34. A.J. Matheson, J. Phys. C: Solid State Phys., 7, 2569 (1974).

    Google Scholar 

  35. S. Kirkpatrick, Rev. Mod. Phys., 45, 574, (1973).

    Google Scholar 

  36. D. Stauffer and A. Aharony, Introduction to Percolation Theory Revised 2nd ed. (Taylor & Francis, London, 1994).

    Google Scholar 

  37. S. Feng, B.I. Halperin, and P.N. Sen, Phys. Rev. B, 35, 197 (1987).

    Google Scholar 

  38. M. Mogensen, S. Sunde, and S. Primdahl, in High Temperature Electrochemistry: Ceramics and Metals, edited by F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen, and B. Zachau-Christensen (Proc. 17th RisØ International Symposium on Materials Science, RisØ, 1996), p. 77.

  39. J. Abel, A.A. Kornyshev, and W. Lehnert, J. Electrochem. Soc., 144, 4253 (1997).

    Google Scholar 

  40. J. Fleig and J. Maier, J. Electrochem. Soc., 144, L302 (1997).

    Google Scholar 

  41. J. Fleig and J. Maier, J. Electroceramics, 1, 73 (1997).

    Google Scholar 

  42. J.S. Newman, Electrochemical Systems 2nd edition (Prentice-Hall, Englewood Cliffs 1991) (a) pp. 378-390, (b) pp. 454-469, (c) pp. 539-554.

    Google Scholar 

  43. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceram. Soc., 73, 2187 (1990).

    Google Scholar 

  44. D. Bouvard and F.F. Lange, Acta Metall. Mater., 39, 3083 (1991).

    Google Scholar 

  45. M. Suzuki and T. Oshima, Powder Technology, 35, 159 (1983).

    Google Scholar 

  46. C.-H. Kuo and P.K. Gupta, Acta Metall. Materialia, 43, 397 (1995).

    Google Scholar 

  47. E. Achenbach and E. Riensche, J. Power Sources, 52, 283 (1994).

    Google Scholar 

  48. K. Aasberg-Petersen, in Proceedings of the 1st European SOFC Forum, edited by Ulf Bossel, 1 (Lucerne, Switzerland, 1994), p. 111.

  49. P.S. Christensen, in Abstracts, 7th IEA SOFC Workshop Theory and Measurement of Microscale Processes in Solid Oxide Fuel Cells, (Wadahl, Norway, January 18-20, 1995), p. 95.

  50. E. Achenbach, J. Power Sources, 49, 333 (1994).

    Google Scholar 

  51. R. Ødegård, E. Johnsen, and H. Karoliussen, in Solid Oxide Fuel Cells IV. edited by M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal (PV 95-1, The Electrochemical Society Proceedings Series, Pennington, NJ, 1995), p. 810.

  52. J.W. Veldsink, R.M.J. van Damme, G.F. Versteeg, and W.P.M. van Swaaij, Chem. Eng. J., 57, 115 (1995).

    Google Scholar 

  53. B.C. Nguyen, T.A. Lin, and D.M. Mason, J. Electrochem. Soc., 133, 1806 (1986).

    Google Scholar 

  54. T.H. Etsell and S.N. Flengas, J. Electrochem. Soc., 118, 1890 (1971).

    Google Scholar 

  55. S.V. Karpachev, A.E. Zupnik, and M.V. Perfil'ev, Soviet Electrochem., 6, 443 (1970).

    Google Scholar 

  56. V.D. Belyaev, T.I. Politova, O.A. Mar'ina, and V.A. Sobyanin, J. Catalysis A: General, 133, 122 (1996).

    Google Scholar 

  57. T. Norby, O.J. Velle, H. Leth-Olsen, and R. Tunold, in Solid Oxide Fuel Cells edited by S.C. Singhal and H. Iwahara (PV 93-4, The Electrochemical Society Proceedings Series, Pennington, NJ, 1993), p. 473.

  58. E.J.L. Schouler and H.S. Isaacs, Solid State Ionics, 5, 555 (1981).

    Google Scholar 

  59. J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippomatsu, S. Nakagawa, and K. Hashimoto, J. Electrochem. Soc., 141, 2129 (1994).

    Google Scholar 

  60. H.S. Isaacs and L.J. Olmer, J. Electrochem. Soc., 129, 436 (1982).

    Google Scholar 

  61. J.S. Newman and C.W. Tobias, J. Electrochem. Soc., 109, 1183 (1962).

    Google Scholar 

  62. M.E. Abashar and S.S. Elnashaie, Mathl. Comput. Modeling, 18, 85 (1993).

    Google Scholar 

  63. A.L. Lee, R.F. Zabransky, and W.J. Huber, Ind. Eng. Chem. Res., 29, 766 (1990).

    Google Scholar 

  64. A. Solheim, in Proc. 1991 IEA SOFC Workshop Oslo, Norway, August 18-23, edited by B. Thorstensen (Senter for Industriforskning, Oslo, 1991), p. 75.

    Google Scholar 

  65. U.G. Bossel, Facts and Figures (Final Report on SOFC Data to the International Energy Agency Bern 1992), p. B19.

  66. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena (John Wiley and Sons, New York, 1960), p. 505.

    Google Scholar 

  67. D.S. Bordreaux and J.M. Gregor, J. Appl. Phys., 48, 152 (1977).

    Google Scholar 

  68. J. Rodriguez, C.H. Allibert, and J.M. Chaix, Powder Technol., 47, 25 (1986).

    Google Scholar 

  69. S. Murukami, Y. Akiyama, N. Ishida, T. Yasuo, T. Saito, and N. Furukawa, in Proc. 2nd International Symposium on SOFC, 2-5 July 1991, Athens, Greece, edited by F. Gross, P. Zegers, S.C. Singhal and O. Yamamoto (Athens, 1991), p. 105.

  70. Thermophysical Properties of High Temperature Solid Materials, edited by Y.S. Touloukian, I (Macmillan, New York, 1967), p. 696.

    Google Scholar 

  71. T. Yamamura, H. Yoshitake, H. Tagawa, N. Mori, K. Hirano, J. Mizusaki, S. Ehara, T. Takagi, M. Hishinuma, H. Sasaki, Y. Nakamura, and K. Hashimoto, in Proceedings of the 2nd European SOFC Forum, edited by Bernt Thorstensen, 2 (Oslo, Norway, 1996), p. 617.

  72. J.R. Rostrup-Nielsen, Steam Reforming Catalysts (Danish Technical Press Inc., Copenhagen, 1975), p. 24.

    Google Scholar 

  73. N. Nakagawa, H. Sakurai, K. Kondo, T. Morimoto, K. Hatanaka, and K. Kato, J. Electrochem. Soc., 142, 3474 (1995).

    Google Scholar 

  74. T. Yamamura, H. Tagawa, T. Saito, J. Mizusaki, K. Kamitani, K. Hirano, S. Ehara, T. Takagi, Y. Hishinuma, H. Sasaki, T. Sogi, Y. Nakamura, and K. Hashimoto, in Solid Oxide Fuel Cells IV, edited by M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal, (PV 95-1, The Electrochemical Society Proceedings Series, Pennington, NJ, 1995), p. 741.

  75. J. Mizusaki, H. Tagawa, T. Saito, T. Yamamura, K. Kamitani, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippomatsu, S. Nakagawa, and K. Hashimoto, Solid State Ionics, 70/71, 52 (1994).

    Google Scholar 

  76. T. Norby, in Proceedings of the 2nd European SOFC Forum edited by Bernt Thorstensen, 2 (Oslo, Norway, 1996), p. 607.

  77. J. Guindet, C. Roux, and A. Hammou, in Proc. 2nd International Symposium on SOFC, 2-5 July 1991, Athens, Greece, edited by F. Gross, P. Zegers, S.C. Singhal and O. Yamamoto (Athens, 1991), p. 553.

  78. J.N. Roberts and L.M. Schwartz, Phys. Rev. B, 31, 5990 (1985).

    Google Scholar 

  79. E.A. Mason, A.P. Malinauskas, and R.B. Evans, J. Chem. Phys., 46, 3199 (1967).

    Google Scholar 

  80. G.Ø. Lauvstad, Electrochemistry of the CO-CO 2 system on solid electrolytes (Dr. ing. thesis 1996:52, The Norwegian Institute of Technology, Trondheim, Norway, 1996).

  81. G.Ø. Lauvstad, S. Sunde, and R. Tunold, in High Temperature Electrochemistry: Ceramics and Metals, edited by F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen, and B.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunde, S. Simulations of Composite Electrodes in Fuel Cells. Journal of Electroceramics 5, 153–182 (2000). https://doi.org/10.1023/A:1009962319168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009962319168

Navigation