Skip to main content
Log in

Buffering capacity through cation leaching of Pinus radiata D. Don canopy

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The change in the composition of atmospheric deposition as it passes through the forest canopy on two 10-year-old Pinus radiata D. Don forests (Manzanal and Posadero) was studied in the Basque Country, analysing the concentration of different constituents in bulk precipitation and throughfall. The precipitation at the study sites was bimodal with two maxima in the year; one in late spring and another one in late autumn. Posadero had a mean annual precipitation of 1223.6 mm with an interception loss of 27.5% by the forest canopy and Manzanal had a mean annual precipitation of 978.6 mm with the interception loss being 22.2% of it. Constituent concentrations followed a similar seasonal variation, increasing during the summer when precipitation decreases. At both study sites the chemical species analysed in bulk precipitation and throughfall were characterised by the fact that they came from three distinct sources: acidic pollution, marine and terrestrial origin. Concentration of constituents in bulk precipitation in Manzanal was higher than in Posadero, most probably due to the smaller amount of precipitation that falls in this study site. The precipitation at Manzanal had a significantly lower pH than at Posadero. The amounts of sulphate, nitrate-nitrogen, organic nitrogen and protons that fell in the bulk precipitation at Manzanal (the polluted site) were higher than those that fell at Posadero (less polluted site). The concentration of organic nitrogen in the bulk precipitation of the polluted site was significantly related to the hydrocarbon concentration measured in the atmosphere in the nearby town of Muskiz. Throughfall in Manzanal had higher amounts of sulphate, nitrate-nitrogen, calcium, magnesium, sodium, potassium and chloride than in Posadero. This fact suggests that both dry deposition and canopy leaching were an important source of throughfall constituents in Manzanal. The amount of manganese measured in Posadero throughfall was higher than that found in Manzanal throughfall. The pH in the throughfall did not show any significant difference between sites and was significantly higher than in bulk precipitation. Thus, canopies in the study sites seem to be able to neutralise very efficiently the acidic load of bulk deposition. Despite this buffering capacity of the canopies, the soil at Manzanal appeared to be more acidic than at Posadero, probably due to the liberation of protons in the rhizosphere when the neutralising pacity of the canopy is `recharged'. This soil acidification may be leading to a greater solubilization of aluminium in the polluted site which could suffer from cation nutrient deficiencies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abacus Concepts. 1996. StatView 4.5. Abacus Concepts, Inc., Berkeley.

    Google Scholar 

  • Amezaga, I., González-Arias, A., Domingo, M., Echeandia, A. & Onaindia, M. 1997. Atmospheric deposition and canopy interactions for conifer and deciduous forests in Northern Spain. Water, Air and Soil Pollution 97: 303–313.

    Google Scholar 

  • Andersen, H.V. & Hovmand, M.F. 1999. Review of dry deposition measurements of ammonia and nitric acid to forest. Forest Ecol. Managem. 114: 5–18.

    Google Scholar 

  • APHA, AWWA, WPCF, 1989. Standard Methods for the Examination of Water and Waste Water, 17th edn. Washington DC.

  • Aseguinolaza, C., Gó mez Garcia, D., Lizaur, X., Monserrat, G., Morant, G., Salaverria, M.R. & Uribe-Echebarria, P. 1988. Vegetació n de la Comunidad Autó noma del Pais Vasco. Servicio de Publicaciones del Gobierno Vasco. Vitoria/Gasteiz.

  • Attiwill, P.M. 1966. The chemical composition of rain water in relation of nutrients in mature eucalyptus forest. Plant and Soil 24: 390–406.

    Google Scholar 

  • Baba, M., Okazaki, M. & Hashitani, T. 1995. Effect of acid deposition on forested catchment in the western Tokyo, Japan. Water, Air and Soil Pollution 85: 1215–1220.

    Google Scholar 

  • Bache, D.H. 1977. Sulphur dioxide uptake and the leaching of sulphates from a pine forest. J. Applied Ecol. 14: 881–895.

    Google Scholar 

  • Becquer, T., Merlet, D., Boudot, J.-P., Rouiller, J. & Gras, F. 1990. Nitrification and nitrate uptake: Leaching balance in a declined forest ecosystem in eastern France. Plant and Soil 125: 95–107.

    Google Scholar 

  • Bellot, J. & Escarre, A. 1991. Chemical characteristics and temporal variations of nutrients in throughfall and stemflow of three species in Mediterranean holm oak forest. Forest Ecol. Managem. 41: 125–135.

    Google Scholar 

  • Berger, T.W., Glatzel, G. & Kasper, A. 1996. The influence of basic aerosols on throughfall fluxes of sulfate, ammonium and nitrate in three oak stands along a distance gradient from a lime quarry. Water, Air and Soil Pollution 90: 521–530.

    Google Scholar 

  • Bredemeier, M. 1988. Forest canopy transformation of atmospheric deposition. Water, Air and Soil Pollution 40: 121–138.

    Google Scholar 

  • Bytnerowicz, A. & Riechers, G. 1995. Nitrogenous air pollutants in a mixed conifer stand of the western Sierra Nevada, California. Atmosph. Environ. 29: 1369–1377.

    Google Scholar 

  • Cappellato, R. & Peters, N.E. 1995. Dry deposition and canopy leaching rates in deciduous and coniferous forests of the Georgia Piedmont: An assessment of a regression model. J. Hydrol. 169: 131–150.

    Google Scholar 

  • Cappellato, R., Peters, N.E. & Ragsdale, H.L. 1993. Acidic atmospheric deposition and canopy interactions of adjacent deciduous and coniferous forests in the Georgia Piedmont. Canad. J. Forest Res. 23: 1114–1124.

    Google Scholar 

  • Casado, H., Ezcurra, A., Durana, N., Albala, J.L., Garcia, C., Ureta, I., Lacaux, J.P. & Van Dinh, P. 1989. Chemical composition of acid rain in the North of Spain: The EPOCA Program. Atmos. Res. 22: 297–306.

    Google Scholar 

  • Christ, M., Zhang, Y., Likens, G. E. & Driscoll, C. T. 1995. Nitrogen retention capacity of a northern hardwood forest soil under ammonium sulfate additions. Ecol. Applic. 5: 802–812.

    Google Scholar 

  • Cronan, C.S. & Reiners, W.A. 1983. Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Œcologia 59: 216–223.

    Google Scholar 

  • Draaijers, G.P.J., Ivens, W.P.M.F. & Bleuten, W. 1988. Atmospheric deposition in forest edges measured by monitoring canopy throughfall. Water, Air and Soil Pollution 42: 129–136.

    Google Scholar 

  • Eaton, J.S., Likens, G.E. & Bormann, F.H. 1973. Throughfall and stemflow chemistry in a northern hardwood forest. J. Ecol. 61: 495–508.

    Google Scholar 

  • Eriksson, E. 1960. The yearly circulation of chloride and sulfur in nature; meteorological geochemical and pedological implications. Part II. Tellus 12: 63–109.

    Google Scholar 

  • Eusko Jaurlaritza 1992. Estudio sobre lluvias acidas. Calidad Ambiental/ lngurugiro Kalitatea. Departamento de Economia, Planificación y Medio Ambiente. Servicio Central de Publicaciones del Gobierno Vasco. Vitoria/Gasteiz.

    Google Scholar 

  • Ezcurra, A., Casado, H., Lacaux, J.P. & Garcia, C. 1988. Relationships between meteorological situations and acid rain in Spanish Basque Country. Atmosph. Environ. 22: 2779–2786.

    Google Scholar 

  • Ferres, Ll., Roda, F.A., Verdú , M.C. & Terradas, J. 1984. Circulació n de nutrientes en algunos ecosistemas forestales del Montseny (Barcelona). Mediterránea 7: 139–166.

    Google Scholar 

  • FiIIion, N., Probst, A. & Probst, J.L. 1998. Natural organic matter contribution to throughfall acidity in French forests. Environ. Intern. 24: 547–558.

    Google Scholar 

  • Forti, M.C., Moreira-Nordemann, L.M., Andrade, M.F. & Orsini, C.Q. 1990. Elements in the precipitation in remote areas of the world. J. Geophys. Res. 87: 8771–8786.

    Google Scholar 

  • Friedland, A.J., Miller, E.K., Battles, J.J. & Thorne, J.F. 1991. Nitrogen Deposition, distribution and cycling in a subalpine spruce-fir forest in the Adirondacks, New York, USA. Biogeochemistry 14: 31–55.

    Google Scholar 

  • Gallardo, J.F., SantaRegina, I., Harrison, A.F. & Howard, D.M. 1995. Organic matter and nutrient dynamics in three ecosystems of the 'sierra de Bejar' mountains (Salamanca, Spain). Acta OEcologica 16: 447–459.

    Google Scholar 

  • Galloway, J.N. & Likens, G.E. 1976. Calibration of collection procedures for the determination of precipitation chemistry. Water, Air and Soil Pollution 6: 241–258.

    Google Scholar 

  • Gandullo, J.M., González Alonso, S. & Sánchez Palomares, O. 1974. Ecologíade los pinares espafioles. IV Pinus radiata D. Don. Ministerio de Agricultura. Instituto Nacional de Investigaciones Agrarias. Madrid.

    Google Scholar 

  • Gatz, D. F. & Dingle, A. N. 1971. Trace substances in rain water: concentration variations during convective rains, and their interpretation. Tellus 23: 14–27.

    Google Scholar 

  • Gjengedal, E. 1996. Effects of soil acidification on foliar leaching and retranslocation of metals in vascular plants. Water, Air and Soil Pollution 86: 221–234.

    Google Scholar 

  • Gobierno Vasco 1997. Inventario Forestal de la C.A.P.V. Resultados por municipios. Departamento de Industria, Agricultura y Pesca. Servicio de Publicaciones del Gobierno Vasco. Vitoria/Gasteiz.

    Google Scholar 

  • González-Arias, A., Amezaga, I., Echeandia, A., Domingo, M. & Onaindia, M. 1998. Effects of pollution on the nutrient return via litterfall for Pinus radiata plantations in the Basque Country. Plant Ecol. 139: 247–258.

    Google Scholar 

  • Granat, L. & Hallgren, J.-E. 1992. Relation between estimated dry deposition and throughfall in a coniferous forest exposed to controlled levels of SO2 and NO2. Environmen. Pollut. 75: 237–242.

    Google Scholar 

  • Hansen, B. & Nielsen, K.E. 1998. Comparison of acidic deposition to semi-natural ecosystems in Denmark-coastal heath, inland heath and oak wood. Atmospher. Environ. 32: 1075–1086.

    Google Scholar 

  • Hanson, P.J. & Lindberg, S.E. 1991. Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmospher. Environ. 25: 1615–1634.

    Google Scholar 

  • Hosker, R.P. & Linderberg, S.E. 1982. Review: Atmospheric deposition and plant assimilation of gases and particles. Atmospher. Environ. 16: 889–910.

    Google Scholar 

  • Ihobe 1998. Estado del Medio Ambiente en la Comunidad Autó noma del Pais Vasco. Gobierno Vasco. Vitoria/Gasteiz.

    Google Scholar 

  • Jordan, D., Golley, F. & Hall, J. 1980. Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotropica 12: 61–66.

    Google Scholar 

  • Joslin, J.D. & Wolfe, M.H. 1992. Tests of the use of net throughfall sulfate to estimate dry and occult sulfur deposition. Atmospher. Environ. 26A: 63–72.

    Google Scholar 

  • Kimmins, J.P. 1997. Forest Ecology. A Foundation for Sustainable Management. Prentice Hall, New Jersey.

    Google Scholar 

  • Kreutzer, K., Beier, C., Bredemeier, M., Blank, K., Cummins, T., Farrel, E.P., Larnmersdorf, N., Rasmussen, L., Rothe, A., de Visser, P.H.B., Weis,W., Weiß , T. & Xu, Y.-J. 1998. Atmospheric deposition and soil acidification in five coniferous forest ecosystems: A comparison of the control plots of the EXAM sites. Forest Ecol. Manag. 101: 125–142.

    Google Scholar 

  • Lakhani, K.H., Miller, H.O. 1980. Assessing the contribution of crown leaching to the element content of rainwater beneath trees. In: Hutchinson, T.C. & Havas, M. (eds) Effects of acid precipitation on terrestrial ecosystems. NATO Conference Series. Plenum Press, New York.

    Google Scholar 

  • Lee, D.S. 1993. Spatial variability of urban precipitation chemistry and deposition: Statistical associations between constituents and potential removal processes of precursor species. Atmospher. Environ. 27B: 321–337.

    Google Scholar 

  • Legendre, L. & Legendre, P. 1983. Numerical Ecology. Elsevier Scientific Publishing Company.

  • Likens, G. E., Borman, F. H., Pierce, R. S., Eaton, J. S. & Munn, R. E. 1984. Long-term trends in precipitation chemistry at Hubbard Brook, New Hampshire. Atmospher. Environ. 18: 2641–2647.

    Google Scholar 

  • Lin, Z.Q., Schuepp, P.H., Schemenauer, R.S. & Kennedy, O.O. 1995. Trace metal contamination in and on balsam fir (Abies balsamea (L) Mill.) foliage in Southern Quebec, Canada. Water, Air and Soil Pollution 85: 175–191.

    Google Scholar 

  • Lindberg, S. E., Lovett, G. M., Richter, D. D. & Johnson, D. W. 1986. Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145.

    Google Scholar 

  • Linderberg, S.E. & Oarten, C.T. Jr. 1988. Sources of sulfur in forests canopy throughfall. Nature 336: 148–151.

    Google Scholar 

  • Lovett, O.M. & Lindberg, S.E. 1986. Dry deposition of nitrate to a deciduous forest. Biogeochemistry 2: 137–148.

    Google Scholar 

  • Lükewille, A., Bredemeier, M. & Ulrich, B. 1993. Input-output relations of major ions in European forest ecosystems. Agriculture, Ecosystems & Environment 47: 175–184.

    Google Scholar 

  • Lytle, C.M., Smith, B.N. & McKinnon, C.Z. 1995. Manganese accumulation along Utah roadways: A possible indication of motor vehicle exhaust pollution. Sci. Total Environ. 162: 105–109.

    Google Scholar 

  • Mayer, R. & Ulrich. B. 1978. Input of atmospheric sulfur by dry and wet deposition to two central European forest ecosystems. Atmospher. Environ. 12: 375–377.

    Google Scholar 

  • Mesanza, J.M. & Casado, H. 1994. Atmospheric deposition at Pinus radiata sites in the Spanish Basque Country. J. Environmental Sci. Health A29: 729–744.

    Google Scholar 

  • Miller, H.G. 1995. The influence of stand development on nutrient demand, growth and allocation. Plant and Soil 168- 169: 225–232.

    Google Scholar 

  • Miller, H.G., Cooper, J.M. & Miller, J.D. 1976. Effects of nitrogen supply on nutrients in litter fall and crown leaching in a stand of Corsican pine. J. Applied Ecol. 13: 233–248.

    Google Scholar 

  • Moreno, G., Oallardo, J.F., Schneider, K. & Ingelmo, F. 1996. Water and bioelement fluxes in four Quercus pyrenaica forests along a pluviometric gradient. Annals of Sci. For. 53: 625–639.

    Google Scholar 

  • Morrison, I.K. 1984. Acid Rain. A Review of Literature on Acid Deposition Effects in Forest Ecosystems. Forestry Abstracts 8: 483–506.

    Google Scholar 

  • Mougougou, A., Tremolieres, M., Sanchez-Perez, J.M. & Nobelis, P. 1998. Réalité de l'excrétion foliare en milieu forestier alluvial chez deux espè ces ligneuses de la sousstrate arborescente. C.R. Acad. Sci. Paris, Sciences de la vie 321: 915–922.

    Google Scholar 

  • Okazaki, M., Xu, G. & Sun, Z. 1998. Effects of acidic deposition on soil ecosystems under forest in the Chongqing region of China. Soil Sci. Plant Nutrit. 44: 187–196.

    Google Scholar 

  • Onaindia, M., González-Arias, A., Amezaga, A., Echeandia, A. & Domingo, M. 1994 Flujo de nutrientes a través del agua de lluvia y lavado de copa en bosques de Pinus radiata D. Don. Studia Œcologica X-XI: 367–372.

    Google Scholar 

  • Onaindia, M., González-Arias, A., Amezaga, I., Domingo, M. & Echeandia, A. 1995. Nutrient fluxes in precipitation and throughfall in forests of northern Spain. pp. 63–73. In: Bellan, D.; Bonin, G. & Emig, C. (eds.), Functioning and dynamics of perturbed ecosystems. Lavoisier, Paris.

    Google Scholar 

  • Pearson, J. & Stewart, G. 1993. Tansley Review No. 56. The Deposition of atmospheric ammonia an its effects on plants. New Phytol. 125: 283–305.

    Google Scholar 

  • Pedersen, L.B., Hansen, K., Bille-Hansen, J., Lober, M. & Hovmand, M.F. 1995. Throughfall and canopy buffering in three Sitka spruce stands in Denmark. Water, Air and Soil Pollution 85: 1593–1598.

    Google Scholar 

  • Prada-Sánchez, J.M., García-Jurado, I., González-Manteiga, W., Fiestras-Janeiro, M.G., Espada-Rios, M.I. & Lucas-Dominguez, T. 1993. Multivariate statistical analysis of precipitation chemistry in Northern Spain. Water, Air and Soil Pollution 69: 37–55.

    Google Scholar 

  • Radzi Abas, M., Ahmad-Shah, A. & Nor Awang, M. 1992. Fluxes of ions in precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. Environmen. Pollut. 75: 209–213.

    Google Scholar 

  • Rehfuess, K.E. 1981. Ñber die Wirkungen des saurn Niederschlage in Waldokosystemen. Forstwissenschaftliches Centralblatt. 100: 363–381.

    Google Scholar 

  • Rehfuess, K.E. 1983. Walderkrankungen und Immissionen-eine Zwischenbilanz, Allg. Forstz. 38: 601–610.

    Google Scholar 

  • Reiners, W.A. & Olson, R.K. 1984. Effects of canopy components on throughfall chemistry: an experimental analysis.Œcologia 63: 320–330.

    Google Scholar 

  • Rustad, L.E., Kahl, J.S., Norton, S.A. & Fernandez, I.J. 1994. Underestimation of dry deposition by throughfall in mixed northern hardwood forests. J. Hydrol. 162: 319–336.

    Google Scholar 

  • Schlesinger, W.H. 1991. Biogeochemistry. An analysis of global change. Academic Press, San Diego.

    Google Scholar 

  • Schulze, E.-D. & Ulrich, B. 1991. Acid rain-a large-scale, unwanted experiment in forest ecosystems. pp. 89–106. In: Mooney, H.A. et al. (eds.) Ecosystem Experiments. John Wiley & Sons Ltd. London.

    Google Scholar 

  • Siegel, S. & Castellan, N.J. Jr. 1988. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill International Editions.

  • Sokal, R.R. & Rohlf, F.J. 1981. Biometry. The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Compai1y. New York.

    Google Scholar 

  • Sutton, M.A., Place, C.J., Eager, M., Fowler, D. & Smith, R.I. 1995. Assessment of the magnitude of ammonia emissions in the United Kingdom. Atmospher. Environ. 29: 1393–1411.

    Google Scholar 

  • Tomlinson, G.H. 1990. Effects of Acid Deposition on the Forest of Europe and North America. CRC Press, Boston.

    Google Scholar 

  • Turner, J. & Lambert, M.J. 1987. Forest water usage and interactions with nutrition of Pinus radiata. Acta OEcologica 8: 37–43.

    Google Scholar 

  • Van Breeman, N., Burrough, P.A., Velthors, E.J., Van Dobben, H.F., de Wit, T., Ridder, T.B. & Reinjinders. H.F.R. 1982. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299: 548–550.

    Google Scholar 

  • Van Dijk, H.F.G. & Roelofs, J.G.M. 1988. Effects of excessive ammonium deposition on the nutritional status and condition of pine needles. Physiologia Plantarum 73: 494–501.

    Google Scholar 

  • Van Dobben, H.F., ter Braak, C.J.F. & Dirkse, G.M. 1999. Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecol. Manag. 114: 83–95.

    Google Scholar 

  • Van Ek, R. & Draaijers, G.P.J. 1994. Estimates of atmospheric deposition and canopy exchange for three common tree species in the Netherlands. Water, Air and Soil Pollution 73: 61–82

    Google Scholar 

  • Veneklaas, E.J. 1990. Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forest Colombia. J. Ecol. 78: 974–992.

    Google Scholar 

  • Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. Am. Naturalist 119: 553–572.

    Google Scholar 

  • Vose, J.M. & Swank, W.T. 1990. Preliminary estimates of foliar absorption of 15N-labelled nitric acid vapor (HNO3) by mature eastern white pine (Pinus strobus). Can. J. Forest Res. 20: 857–860.

    Google Scholar 

  • Voigt, G.K. 1960. Distribution of rainfall under forest stands. Forestry Science 6: 2–9.

    Google Scholar 

  • Walkey, A. 1935. An examination of methods for determining organic carbon and nitrogen soils. J. Agricult. Sci. 25: 598–609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Arias, A., Amezaga, I., Echeandía, A. et al. Buffering capacity through cation leaching of Pinus radiata D. Don canopy. Plant Ecology 149, 23–42 (2000). https://doi.org/10.1023/A:1009847202648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009847202648

Navigation