Skip to main content
Log in

WA Contractions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

The problem of unitary ρ-dilation can be generalized by Langer [9, p.55] as follows: Let A be a positive linear operator on a Hilbert space H, 0 < mI ≤ A ≤ MI, and CA = {T : QTnQ = PHUn|H(n = 1,2,3,...) where Q = A-1/2 and U is a unitary on some Hilbert space H1 ⊃ H}. Then T ∈ CA if and only if T satisfies the condition: A + 2Re z(I - A)T + |z|2T*(A - 2I)T ≥ 0. Using the above generalization, we have a block-matrix criterion for an element in CA as follows: T ∈ CA if and only if P(A,z,T,n) ≥ 0(n = 1,2,3,...) [Theorem 2.5]. We define the operator radii wA(.) by wA(T) = inf;{r>0 : T/r ∈ CA}. Applying the block-matrix criterion, we give some fundamental properties for wA(.) and extend some earlier results involving operator radii wρ(.)(ρ > 0) in Fong and Holbrook (1983), Haagerup and de la Harpe (1992), Holbrook (1968), Holbrook (1969) and Holbrook (1971) to the case of wA(.). We have the equalities \(w_\rho (T) = \inf \{ r > 0:\rho ^{ - 1} rQ(\rho ,1,r^{ - 1} T,n) \geqslant 0{\text{ for all }}n = 1,2,3,...\} (\rho > 0)\) and \(w_\rho (T) = \inf \{ ||B||:w_\rho (B^{ - 1/2} TB^{ - 1/2} ) \leqslant 1,B > 0\} (0 < \rho \leqslant 2)\). Inequalities involving completely bounded linear maps on unital C*-algebras are also provided [Theorem 4.5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bouldin, The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212–219.

    Google Scholar 

  2. C. K. Fong and J. A. R. Holbrook, Unitary invariant operator norms, Can. J. Math. 35 (1983), 274–299.

    Google Scholar 

  3. U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. 115 (1992), 371–379.

    Google Scholar 

  4. J. A. R. Holbrook, On the power bounded operators of Sz.-Nagy and Foias, Acta Sci. Math. (Szeged) 29 (1968), 299–310.

    Google Scholar 

  5. J. A. R. Holbrook, Multiplicative properties of the numerical radius in operator theory. J. Reine Angew. Math. 237 (1969), 166–174.

    Google Scholar 

  6. J. A. R. Holbrook, Inequalities governing the operator radii associated with unitary ρ-dilations, Michigan Math. J. 18 (1971), 149–159.

    Google Scholar 

  7. V. Istratescu, A remark on a class of power bounded operators, Acta Sci. Math. (Szeged) 29 (1968), 311–312.

    Google Scholar 

  8. B. Sz.-Nagy and C. Foias, On certain classes of power bouonded operators in Hilbert space. Acta Sci. Math. (Szeged) 27 (1966), 17–25.

    Google Scholar 

  9. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akademiei Kiado, Budapest, 1970.

    Google Scholar 

  10. V. I. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes. Math. Vol. 146, Longman Sci. Tech., London, 1986.

    Google Scholar 

  11. V. I. Paulsen, S. C. Power and R. R. Smith, Schur products and matrix completions, J. Func. Anal. 85 (1989), 151–178.

    Google Scholar 

  12. V. I. Paulsen and C. Y. Suen, Commutant representations of completely bounded maps, J. Operator Theory 13 (1985), 87–101.

    Google Scholar 

  13. C. Y. Suen, The numerical radius of a completely bounded map, Acta Math. Hungar. 59 (1992), 283–289.

    Google Scholar 

  14. C. Y. Suen, The minimum norm of certain completely positive maps, Proc. Amer. Math. 123 (1995), 2407–2416.

    Google Scholar 

  15. C. Y. Suen, W ρ contractions, Soochow Journal of Math. 24 (1998), 1–8.

    Google Scholar 

  16. M. Takesaki, Theory of operator algebra 1, Springer, Berlin, Heidelberg, and New York, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suen, CY. WA Contractions. Positivity 2, 301–310 (1998). https://doi.org/10.1023/A:1009712101922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009712101922

Navigation