Skip to main content
Log in

Size Fractionation (Dissolved, Colloidal and Particulate) of Trace Metals in the Thur River, Switzerland

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The distribution of some trace metals (Cu, Zn, Ni, Co,Fe, Mn) and of DOC over a particulate (> 1 μm),a colloidal (size < 0.45 μm and molecular weight > 10 kD) and an ultrafiltered fraction (< 10 kD)was determined at several sites on the Thur River,Switzerland, at various times of the year. Thecomplexation of Cu by strong ligands in theultrafiltrate and in the conventional filtrate (<0.45 μm) was compared using a ligand-exchange/CSV method.

The <0.45 μm concentrations of Cu (from anaverage of 7 nM to 24 nM), Zn (<5–23 nM), Ni (5–13 nM),Co (1.5–3 nM) and Mn (7–92 nM)increased downstream. The major part of Cu, Zn, Niand Co usually occurred in the ultrafiltratefraction at all sites, whereas Fe and Mn were mostlyin the particulate fraction, under conditions of lowsuspended matter content (< 10 mg L-1) in theriver. The percentage of metal in the colloidalfraction, with respect to the 0.45-μm filtrate,decreased in the order: Cu (median 11%) > Zn ≈Ni(median 5–6%) > Mn ≈ Co (median < 5%). DOCalso consisted mostly of molecules in the < 10 kDrange.

Cu was strongly complexed by natural organic ligandsin all filtrate and ultrafiltrate samples. A largepart of the strong Cu binding ligands consisted ofcompounds in the < 10 kD range, but colloidalligands with similar properties also occurred. Cu wasdistributed among the dissolved and the colloidalligands, roughly in proportion to organic carbon.The colloidal fraction (as defined here) did notincrease in its proportional amount downstream and wasonly of limited significance in transporting traceelements in the Thur River under low discharge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoit, G. (1994) Clean technique measurement of Pb, Ag and Cd in freshwater: a redefinition of metal pollution. Env.Sci.Technol. 28, 1987–1991.

    Google Scholar 

  • Benoit, G. (1995) Evidence of the particle concentration effect for lead and other metals in fresh waters based on ultraclean technique analyses. Geochim.Cosmochim.Acta 59, 2677–2687.

    Google Scholar 

  • Benoit, G., Hunter, K. S., and Rozan, T. F. (1997) Sources of trace metal contamination artifacts during collection, handling and analysis of freshwaters. Anal.Chem. 69, 1006–1011.

    Google Scholar 

  • Benoit, G., Oktay-Marshall, S. D., Cantu, A. I., Hood, E. M., Coleman, C. H., Corapcioglu, M. O., and Santschi P. H. (1994) Partitioning of Cu, Pb, Ag, Zn, Fe, Al and Mn between filter-retained particles, colloids and solution in six Texas estuaries. Mar.Chem. 45, 307–336.

    Google Scholar 

  • Buffle, J., Perret, D., and Newman, M. (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids and macromolecules. In Environmental particles, (eds. J. Buffle and H. P. Van Leeuwen), Vol. 1, p. 554. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Coale, K. H. and Flegal, A. R. (1989) Copper, zinc, cadmium and lead in surface waters of lakes Erie and Ontario. Sci.Tot.Env. 87/88, 297–304.

    Google Scholar 

  • Emmenegger, L. (1999) Light-induced redox cycling of iron in lakes. Ph. D. Thesis Nr. 13273, Swiss Federal Institute of Technology ETH.

  • Hilger, S. (1998) Kolloidale und partikuläre Phosphoreinträge in zwei Hauptzuflüssen des Luganer Sees. Ph. D. Thesis Nr. 12807, ETH Zürich.

  • Hilger, S., Sigg, L., and Barbieri, A. (1999) Size fractionation of phosphorus (dissolved, colloidal and particulate) in two tributaries to Lake Lugano. Aquatic Sciences 61, 337–353.

    Google Scholar 

  • Hurley, J. P., Benoit, J. M., Babiarz, C. L., Shafer, M. M., Andren, A. W., Sullivan, J. R., Hammond, R., and Webb, D. A. (1995) Influences of watershed characteristics on mercury levels in Wisconsin rivers. Environ.Sci.Technol. 29, 1867–1875.

    Google Scholar 

  • Hurley, J. P., Shafer, M.M., Cowell, S. E., Overdier, J. T., Hughes, P. E., and Armstrong, D. E. (1996) Trace metal assessment of Lake Michigan tributaries using low-level techniques. Environ.Sci.Technol. 30, 2093–2098.

    Google Scholar 

  • Jakob, A., Zobrist, J., Davis, J. S., Liechti, P., and Sigg, L. (1994) NADUF-Langzeitbeobachtung des chemisch-physikalischen Gewässerzustandes. Gas, Wasser, Abwasser 74, 171–186.

    Google Scholar 

  • Kraepiel, A. M. L., Chiffoleau, J.-F., Martin, J.-M., and Morel F.M.M. (1997) Geochemistry of trace metals in the Gironde estuary. Geochim.Cosmochim.Acta 61, 1421–1436.

    Google Scholar 

  • Landeshydrologie and-geologie (1997) Hydrologisches Jahrbuch der Schweiz, Bern.

  • Lienemann, C.-P., Taillefert, M., Perret, D., and Gaillard, J.-F. (1997) Association of cobalt and manganese in aquatic systems: chemical and microscopic evidence. Geochim.Cosmochim.Acta 61, 1437–1446.

    Google Scholar 

  • Martin, J.-M. and Windom, H. L. (1991) Present and future roles of ocean margins in regulating marine biogeochemical cycles of trace elements. In Ocean margin processes in global change, (ed. R. F. C. Mantoura, J.-M. Martin, and R.Wollast), pp. 45–67. JohnWiley & Sons, Chichester.

  • Martin, J.M., Dai, M., and Cauwet, G. (1995) Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnol.Oceanogr. 40, 119–131.

    Google Scholar 

  • Moffett, J. W. and Ho, J. (1996) Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochim.Cosmochim.Acta 60, 3415–3424.

    Google Scholar 

  • Nowack, B., Xue, H., and Sigg, L. (1997) Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ.Sci.Technol. 31, 866–872.

    Google Scholar 

  • Perret, D., Newman, M. E., Nègre, J.-C., Chen, Y., and Buffle, J. (1994) Submicron particles in the Rhine river-I. Physico-chemical characterization. Wat.Res. 28, 91–106.

    Google Scholar 

  • Pham, M. K. and Garnier, J.-M. (1998) Distribution of trace elements associated with dissolved compounds (<0.45µm-1 nm) in freshwater using coupled (frontal cascade) ultrafiltration and chromatographic separations. Environ.Sci.Technol. 32, 440–449.

    Google Scholar 

  • Prasch, A. (1999) Determination of the speciation of nickel in freshwater with ligand exchange and voltammetry. Diploma Thesis, EAWAG, Limnological Research Center, Kastanienbaum.

  • Qian, J., Xue, H. B., Sigg, L., and Albrecht, A. (1998) Complexation of cobalt by natural ligands in freshwater. Environ.Sci.Technol. 32, 2043–2050.

    Google Scholar 

  • Ross, J. M. and Sherrell, R. M. (1999) The role of colloids in trace metal transport and adsorption behavior in New Jersey Pinelands streams. Limnol.Oceanogr. 44, 1019–1034.

    Google Scholar 

  • Rostad, C. E., Leeenheer, J. A., and Daniel, S. R. (1997) Organic carbon and nitrogen content associated with colloids and suspended particulates from the Mississippi river and some of its tributaries. Environ.Sci.Technol. 31, 3218–3225.

    Google Scholar 

  • Sañudo-Wilhelmy, S. A., Rivera-Duarte, I., and Flegal, A. R. (1996) Distribution of colloidal trace metals in the San Francisco Bay estuary. Geochim.Cosmochim.Acta 60, 4933–4944.

    Google Scholar 

  • Shafer, M. M., Overdier, J. T., Hurley, J. P., Armstrong, D., and Webb, D. (1997) The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chem.Geol.136, 71–97.

    Google Scholar 

  • Shafer, M. M., Overdier, J. T., Philipps, H., Webb, D., Sullivan, J. R., and Armstrong, D. E. (1999) Trace metals levels and partitioning in Wisconsin rivers. Water Air Soil Poll. 110, 273–311.

    Google Scholar 

  • Shiller, A. M. (1997) Dissolved trace elements in the Mississippi River: seasonal, interannual and decadal variability. Geochim.Cosmochim.Acta 61, 4321–4330.

    Google Scholar 

  • Shiller A. M. and Boyle, E. (1985) Dissolved zinc in rivers. Nature 317, 49–52.

    Google Scholar 

  • Stordal, M. C., Gill, G. A., Wen, L.-S., and Santschi, P. H. (1996) Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms. Limnol.Oceanogr. 41, 52–61.

    Google Scholar 

  • Van den Berg, C. M. G. (1984) Determination of copper in sea water by cathodic stripping voltammetry of complexes with catechol. Anal.Chim.Acta 164, 195–207.

    Google Scholar 

  • Wells, M. L., Kozelka, P. B., and Bruland, K.W. (1998) The complexation of "dissolved" Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI. Mar.Chem. 62, 203–217.

    Google Scholar 

  • Wen, L.-S., Santschi, P., Gill, G., and Paternostro, C. (1999) Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Mar.Chem. 63, 185–212.

    Google Scholar 

  • Wen, L.-S., Santschi, P. H., and Tang, D. (1997) Interactions between radioactively labeled colloids and natural particles: evidence for colloidal pumping. Geochim.Cosmochim.Acta 61, 2867–2878.

    Google Scholar 

  • Wen, L.-S., Stordal, M. C., Tang, D., Gill, G. A., and Santschi, P. H. (1996) An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Mar.Chem. 55, 129–152.

    Google Scholar 

  • Westall, J. C. (1982) FITEQL, A program for the determination of chemical equilibrium constants from experimental data. Department of Chemistry, Oregon State University.

  • Wilkinson, K. J., Joz-Roland, A., and Buffle, J. (1997) Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnol.Oceanogr.42, 1714–1724.

    Google Scholar 

  • Windom, H. L., Byrd, J. T., Smith, R. G., and Huan, F. (1991) Inadequacy of NASQAN data for assessing metal trends in the nation's rivers. Env.Sci.Technol. 25, 1137–1142.

    Google Scholar 

  • Xue, H. B. and Sigg, L. (1994) Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry. Anal.Chim.Acta 284, 505–515.

    Google Scholar 

  • Xue, H., Oestreich, A., Kistler D., and Sigg, L. (1996) Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers. Aquatic Sci. 58, 69–87.

    Google Scholar 

  • Xue, H., Sigg, L., and Gächter, R. (2000) Transport of Cu, Zn and Cd in a small agricultural catchment. Wat.Res. 34, 2558–2568.

    Google Scholar 

  • Xue, H. and Sunda, W. G. (1997) Comparison of [Cu2C] measurements in lake water determined by ligand exchange and cathodic stripping voltammetry and by ion-selective electrode. Environ.Sci.Technol. 31, 1902–1909.

    Google Scholar 

  • Xue, H. B. and Sigg, L. (1993) Free cupric ion concentration and Cu(II) speciation in a eutrophic lake. Limnol.Oceanogr. 38, 1200–1213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigg, L., Xue, H., Kistler, D. et al. Size Fractionation (Dissolved, Colloidal and Particulate) of Trace Metals in the Thur River, Switzerland. Aquatic Geochemistry 6, 413–434 (2000). https://doi.org/10.1023/A:1009692919804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009692919804

Navigation