Skip to main content
Log in

Prevention of nuclear localization of activated caspases correlates with inhibition of apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The caspase family proteases are principal components of the apoptotic pathway. In this study we demonstrate that caspase-1-like proteases and interleukin-1β are important for death induced by various stimuli in cell lines, primary fibroblasts and primary sensory neurons. Furthermore, we show by immunohistochemistry that during the cell death process endogenous caspase-1-like proteases translocate into the nucleus. This translocation is stimulated by interleukin-1 receptor activation. Translocation of caspase-1-like proteases and cell death can be partially prevented by blocking the interleukin-1 receptor with the interleukin-1 receptor antagonist. This finding offers for the first time a mechanistic explanation for the protective effect of the interleukin-1 receptor antagonist against cell death. Furthermore, our data suggest that caspase-1-like proteases have a function in the nucleus which is necessary for completion of the cell death program.

In cultured DRG neurons from embryonic mice the combined inhibition of caspases and the interleukin-1 receptor have an additive effect and fully prevent semaphorin III-induced neuronal death. This shows that endogenous caspases work together with IL-1β in Semaphorin III-induced neuronal death. We hypothetize that the cell death process involves a double activation step, probably including an interleukin-1 autocrine loop. This model can explain our finding that combined inhibition of caspases and interleukin-1 receptor is necessary to strongly inhibit the cell death process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–1316.

    Google Scholar 

  2. Nicholson DW, Thornberry NA. Caspases-killer proteases. Trends in Biochem Sci 1997; 22: 299–306.

    Google Scholar 

  3. Hengartner MO. Programmed cell death in invertebrates. Current Opinion in Genetic & Development 1996; 6: 34–38.

    Google Scholar 

  4. Porter AG, Ng P, J¨anicke RU. Death substrates come alive. Bioassay 1997; 19: 501–507.

    Google Scholar 

  5. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1¯ processing in monocytes. Nature 1992; 356: 768–774.

    Article  PubMed  Google Scholar 

  6. Wilson KP, Black JA, Thomson JA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 1994; 370: 270–275.

    PubMed  Google Scholar 

  7. Mao P-L, Jiang Y, Wee BY, Porter AG. Activation of caspase-1 in the nucleus requires nuclear translocation of pro-caspase-1 mediated by its prodomain. J Biol Chem 1998; 273: 23621–23624.

    PubMed  Google Scholar 

  8. Ona VO, Li M, Vonsattel JPG, et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 1999; 399: 263–267.

    Google Scholar 

  9. Miura M, Zhu H, Rotello R, Hartweig EA, Yuan J. Introduction of apoptosis in fibroblasts by IL-1¯converting enzyme a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993; 75: 653–660.

    Article  PubMed  Google Scholar 

  10. Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of Interleukin-1¯converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 1997; 94: 2007–2012.

    PubMed  Google Scholar 

  11. Friedlander RM, Gagliardini V, Hara H, et al. Dominant negative mutant of Interleukin-1¯converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic injury. J Exp Med 1997; 185: 933–940.

    PubMed  Google Scholar 

  12. Friedlander RM, Brown RH, Gagliardini V, Wang J, Yuan J. Inhibition of ICE shows ALS in mice. Nature 1997; 392: 31.

    Google Scholar 

  13. Kuida K, Lippke JA, Ku G, et al. Altered cytokine export and apoptosis in mice deficient in Inteleukin-1¯converting enzyme. Science 1995; 267: 2000–2002.

    Google Scholar 

  14. Lynch T, Vasilakos JP, Raser K, Keane KM, Shivers BD. Inhibition of interleukin-1 beta converting enzyme family rescues neurons from apoptotic death. Molecular Psychiatry 1997; 2: 227–238.

    PubMed  Google Scholar 

  15. Miwa K, Asano M, Horai R, et al. Caspase 1–independent IL-1¯release and inflammation induced by the apoptosis inducer Fas ligand. Nature Medicine 1998; 4: 1287–1292.

    PubMed  Google Scholar 

  16. Li P, Allen H, Banerjee S, et al. Mice deficient in IL-1¯-converting enzyme are defective in production of mature IL-1¯and resistant to endotoxic shock. Cell 1995; 80: 401–411.

    PubMed  Google Scholar 

  17. van Molle, Brouckaert P, Libert C. Caspase-1 is not involved in experimental hepatitis in mouse. FEBS Letters 1999; 445: 115–118.

    PubMed  Google Scholar 

  18. Colussi PA, Harvey NL, Kumar S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. J Biol Chem 1998; 273: 24535–24542.

    PubMed  Google Scholar 

  19. Vouret-Craviari V, Van Obberghen-Schilling E, Scimeca JC, Van Obberghen-Schilling E, Pouyssegur J. Differential activation of p44mapk (ERK) by alpha-thrombin and thrombinreceptor peptide agonist. Biochem J 1993; 289: 209–214.

    PubMed  Google Scholar 

  20. Fratelli M, Gagliardini V, Galli G, et al. Autocrine IL-1¯regulates both proliferation and apoptosis in EL4–6.1 thymoma cells. Blood 1994; 85: 3532–3537.

    Google Scholar 

  21. Hu S, Peterson PK, Chao CC. Cytokine-mediated neuronal apoptosis. Neurochemistry International 1997; 30: 427–431.

    PubMed  Google Scholar 

  22. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circulation Research 1999; 84: 21–33.

    PubMed  Google Scholar 

  23. Kothny-Wilkes G, Kulms D, Poppelmann B, et al. Interleukin-1 protects transformed keratinocytes from tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 1998; 273: 29247–29253.

    PubMed  Google Scholar 

  24. Mitzshima N, Kohsaka H, Miyasaka N. Ceramide, a mediator of interleukin 1, tumor necrosis factor alpha, as well as Fas receptor signaling, induces apoptosis of rheumatoid arthritis synovial cells. Annals of the Rheumatic Diseases 1998; 57: 495–499.

    PubMed  Google Scholar 

  25. Sloand EM, Young NS, Sato T, Kim S, Maciejewski JP. Inhibition of Interleukin-1beta-converting enzyme in human hematopoietic progenitor cells results in blockade of cytokinemediated apoptosis and expansion of their proliferative potential. Experimental Hematology 1998; 26: 1093–1099.

    PubMed  Google Scholar 

  26. Singh I, Pahan K, Khan M, Singh AK. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem 1998; 273: 20354–20362.

    PubMed  Google Scholar 

  27. Buttini M, Sauter A, Boddeke HWGM. Induction of Interleukin-1¯mRNA after focal Cerebral ischaemia in the in the rat. Molecular Brain Research 1994; 23: 126–134.

    PubMed  Google Scholar 

  28. Friedlander RM, Gagliardini V, Yuan J. Functional role of IL-1¯in ICE-mediated apoptosis. J Exp Med 1996; 184: 717–724.

    PubMed  Google Scholar 

  29. Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelansky ML. The contrasting roles of ICE family proteases and interleukin-1beta in apoptosis induced by trophic factor withdrawal and by copper7zinc superoxide dismutase down-regulation. Proc Natl Acad Sci USA 1996; 93: 5635–5640.

    PubMed  Google Scholar 

  30. Miura M, Friedlander RM, Yuan J. Tumor Necrosis Factorinduced apoptosis is mediated by a crmA-sensitive cell death pathway. Proc Natl Acad Sci USA 1995; 92: 8318–8322.

    PubMed  Google Scholar 

  31. Shi L, Chen G, MacDonald G, et al. Activation of an interleukin 1 converting enzyme-dependent apoptosis pathway by granzyme B. Proc Natl Acad Sci USA 1996; 93: 11002–11007.

    PubMed  Google Scholar 

  32. Messersmith EK, Leonardo ED, Shatz CJ, et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 1995; 14: 949–959.

    PubMed  Google Scholar 

  33. Gagliardini V, Fankhauser C. Semaphorin III can induce death in sensory neurons. Molec and Cell Neurosci 1999; 14: 301–316.

    Google Scholar 

  34. Shi L, Kraut RP, Aebersold R, Greenberg AH. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 1992; 175: 553–566.

    PubMed  Google Scholar 

  35. Shi L, Mai S, Israels S, et al. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 1997; 185: 855–866.

    PubMed  Google Scholar 

  36. Li Y, Chopp M, Jiang N, Zaloga C. In situ detection of DNA fragmentation after focal cerebral ischemia in mice. Molecular Brain Research 1995; 28: 164–168.

    PubMed  Google Scholar 

  37. Hogquist KA, Nett MA, Unanue ER, Chaplin DD. Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci USA 1991; 88: 8485–8489.

    PubMed  Google Scholar 

  38. HamburgerV, Levi-Montalcini R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 1949; 111: 457–501.

    Google Scholar 

  39. Gagliardini V, Fernandez P-A, Lee RKK, et al. Prevention of vertebrate neuronal death by the crmA gene. Science 1994; 263: 826–828.

    PubMed  Google Scholar 

  40. Allsopp TE, Wyatt S, Paterson HF, Davies AM. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent Neurons from apoptosis. Cell 1993; 73: 295–307.

    PubMed  Google Scholar 

  41. Seckinger P, Lowenthal JW, Williamson K, Dayer JM, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol 1987; 139: 1546–1549.

    PubMed  Google Scholar 

  42. Loddick SA, Wong ML, Bongiorno PB, et al. Endogenous Interleukin-1 receptor antagonist is neuroprotective. Biochem & Biophys Res Communications 1997; 234: 211–215.

    Google Scholar 

  43. Lebsack ME, Paul CC, Bloedow DC. Subcutaneous IL-1 receptor antagonist in patients with rheumatoid arthritis. Arthritis Rheumatoid 1991; 34: S45.

    Google Scholar 

  44. Relton JK, Rothwell NJ. Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res Bull 1992; 29: 243–246.

    PubMed  Google Scholar 

  45. Rothwell NJ, Relton JK. Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci Biobehavior Rev 1993; 17: 217–227.

    Google Scholar 

  46. Rothwell NJ, Relton JK. Involvement of Interleukin-1 and Lipocortin-1 in ischaemic brain damage. Cerebrovascular and Brain Metab Rev 1993; 5: 178–198.

    Google Scholar 

  47. Eguchi Y, Srinivasan A, Tomaselli KJ, Shimizu S, Tsujimoto Y. ATP-dependent steps in apoptotic signal transduction. Cancer Research 1999; 59: 2174–2181.

    PubMed  Google Scholar 

  48. Bras A, Ruiz-Vela A, Gonzales de Buitrago G, Martinez AC. Caspases activation by PCR cross-linking in immature B cells: differential effects on growth arrest and apoptosis. FASEB J 1999; 13: 931–944.

    PubMed  Google Scholar 

  49. Rickers A, Peters N, Badock V, Beyaert R, et al. Cleavage of transcription factor SP1 by caspases during anti-IgM-induced B-cell apoptosis. Eur J Biochem 1999; 26: 269–274.

    Google Scholar 

  50. Hara H, Fink KB, Endres M, et al. Attenuation of a transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J of Cerebral Blood Flow & Metab 1997; 17: 370–375.

    Google Scholar 

  51. Bradbury EJ, King VR, Simmons LJ, Priestley JV, McMahon SB. NT-3, but not BDNF, prevents atrophy and death of axotomized spinal cord projection neurons. Eur J Neurosci 1998; 10: 3058–3068.

    PubMed  Google Scholar 

  52. Gimenez y Ribotta M, Revah F, Pradier L, et al. Prevention of motoneuron death by adenovirus-mediated neurotrophic factors. J Neurosci Res 1997; 48: 281–285.

    PubMed  Google Scholar 

  53. Ma J, Endres M, Moskowitz MA. Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischemia in mice. British J Pharmacology 1998; 124: 756–762.

    Google Scholar 

  54. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75: 217–227.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fankhauser, C., Friedlander, R.M. & Gagliardini, V. Prevention of nuclear localization of activated caspases correlates with inhibition of apoptosis. Apoptosis 5, 117–132 (2000). https://doi.org/10.1023/A:1009672411058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009672411058

Navigation