Skip to main content
Log in

Apoptosis in AIDS

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Infection with the human immunodeficiency virus type 1 (HIV-1) leads to progressive immunodeficiency and onset of opportunistic infections and neoplasms. The loss of immune competence is associated with declines in both the functionality and the number of CD4+ lymphocytes. Multiple mechanisms have been proposed to explain death and dysfunction of CD4+ T-cells. The mechanisms of HIV-1-mediated cell death which are relevant in vivo are unclear at present. However, in vitro explorations on the cytopathic effects of HIV-1 have yielded a wealth of potential triggering events, and signaling and effector pathways leading to apoptosis. The types of pro- and anti-apoptotic stimuli that have been associated with HIV-1 are multiple and often appear overlapping or even contradictory. This review focuses on the various molecular determinants from HIV-1 that play a role in induction of apoptosis in T-lymphocytes.Special attention is devoted to the viral genes, env, nef, tat and vpr, for which a significant body of literature on apotosis-related effects is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373: 123–126.

    PubMed  Google Scholar 

  2. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271: 1582–1586.

    PubMed  Google Scholar 

  3. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373: 117–122.

    PubMed  Google Scholar 

  4. Shaw GM, Hahn BH, Arya SK, Groopman JE, Gallo RC, Wong-Staal F. Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 1984; 226: 1165–1171.

    PubMed  Google Scholar 

  5. Fauci AS. The human immunodeficiency virus: Infectivity and mechanisms of pathogenesis. Science 1988; 239: 617–622.

    PubMed  Google Scholar 

  6. Zagury D, Bernard J, Leonard R, et al. Long-term cultures of HTLV-III-infected T cells: A model of cytopathology of T-cell depletion in AIDS. Science 1986; 231: 850–853.

    PubMed  Google Scholar 

  7. Ameisen JC, Capron A. Cell dysfunction and depletion in AIDS: The programmed cell death hypothesis. Immunol Today 1991; 12: 102–105.

    PubMed  Google Scholar 

  8. Finkel TH, Banda NK. Indirect mechanisms of HIV pathogenesis: How does HIV kill T cells? Curr Opin Immunol 1994; 6: 605–615.

    PubMed  Google Scholar 

  9. Laurent-Crawford AG, Krust B, Muller S, et al. The cytopathic effect of HIV is associated with apoptosis. Virology 1991; 185: 829–839.

    PubMed  Google Scholar 

  10. Terai C, Kornbluth RS, Pauza CD, Richman DD, Carson DA. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest 1991; 87: 1710–1715.

    PubMed  Google Scholar 

  11. Groux H, Torpier G, Monte D, MoutonY, Capron A, Ameisen JC. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 1992; 175: 331–340.

    PubMed  Google Scholar 

  12. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RP, Miedema F. Programmed death of T cells in HIV-1 infection. Science 1992; 257: 217–219.

    PubMed  Google Scholar 

  13. Badley AD, McElhinny JA, Leibson PJ, Lynch DH, Alderson MR, Paya CV. Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes. J Virol 1996; 70: 199–206.

    Google Scholar 

  14. Westendorp MO, Frank R, Ochsenbauer C, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375: 497–500.

    PubMed  Google Scholar 

  15. Luciw PA. Human immunodeficiency viruses and their replication. In: Fields BN, Knippe DM, Howley PM, ed. Fields Virology. Philadelphia: Lippincott-Raven 1996; 1881–1975.

    Google Scholar 

  16. Gabuzda DH, Lawrence K, Langhoff E, et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 1992; 66: 6489–6495.

    PubMed  Google Scholar 

  17. Sakai H, Shibata R, Sakuragi J, Sakuragi S, Kawamura M, Adachi A. Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol 1993; 67: 1663–1666.

    PubMed  Google Scholar 

  18. Blanc D, Patience C, Schulz TF, Weiss R, Spire B. Transcomplementation of VIF-HIV-1 mutants in CEM cells suggests that VIF affects late steps of the viral life cycle. Virology 1993; 193: 186–192.

    PubMed  Google Scholar 

  19. Fouchier RA, Simon JH, Jaffe AB, Malim MH. Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. J Virol 1996; 70: 8263–8269.

    PubMed  Google Scholar 

  20. von Schwedler U, Song J, Aiken C, Trono D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 1993; 67: 4945–4955.

    PubMed  Google Scholar 

  21. Madani N, Kabat D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 1998; 72: 10251–10255.

    PubMed  Google Scholar 

  22. Geleziunas R, Bour S, Wainberg MA. Human immunode-ficiency virus type 1-associated CD4 downmodulation. Adv Virus Res 1994; 44: 203–266.

    PubMed  Google Scholar 

  23. Vincent MJ, Raja NU, Jabbar MA.Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: Role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol 1993; 67: 5538–5549.

    PubMed  Google Scholar 

  24. Willey RL, Maldarelli F, Martin MA, Strebel K. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 1992; 66: 7193–7200.

    PubMed  Google Scholar 

  25. Yao XJ, Friborg J, Checroune F, et al. Degradation of CD4 induced by human immunodeficiency virus type 1 Vpu protein: A predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 1995; 209: 615–623.

    PubMed  Google Scholar 

  26. Gottlinger HG, Dorfman T, Cohen EA, Haseltine WA. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc Natl Acad Sci USA 1993; 90: 7381–7385.

    PubMed  Google Scholar 

  27. Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 1990; 64: 621–629.

    PubMed  Google Scholar 

  28. Kerkau T, Bacik I, Bennink JR, et al. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 1997; 185: 1295–1305.

    PubMed  Google Scholar 

  29. Banda NK, Bernier J, Kurahara DK, et al. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 1992; 176: 1099–1106.

    PubMed  Google Scholar 

  30. Lu YY, Koga Y, Tanaka K, Sasaki M, Kimura G, Nomoto K. Apoptosis induced in CD4+cells expressing gp160 of human immunodeficiency virus type 1. J Virol 1994; 68: 390–399.

    PubMed  Google Scholar 

  31. Bartz SR, Emerman M. Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 1999; 73: 1956–1963.

    PubMed  Google Scholar 

  32. Purvis SF, Jacobberger JW, Sramkoski RM, Patki AH, Lederman MM. HIV type 1 Tat protein induces apoptosis and death in Jurkat cells. AIDS Res Hum Retroviruses 1995; 11: 443–450.

    PubMed  Google Scholar 

  33. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 1990; 345: 84–86.

    PubMed  Google Scholar 

  34. Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. Embo J 1991; 10: 1733–1739.

    PubMed  Google Scholar 

  35. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 1995; 268: 429–431.

    PubMed  Google Scholar 

  36. Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    PubMed  Google Scholar 

  37. Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989; 246: 629–634.

    PubMed  Google Scholar 

  38. Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997; 88: 315–321.

    Article  PubMed  Google Scholar 

  39. Ivanov D, Kwak YT, Nee E, Guo J, Garcia-Martinez LF, Gaynor RB. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. J Mol Biol 1999; 288: 41–56.

    PubMed  Google Scholar 

  40. Romano G, Kasten M, De Falco G, Micheli P, Khalili K, Giordano A. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression. J Cell Biochem 1999; 75: 357–368.

    PubMed  Google Scholar 

  41. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998; 92: 451–462.

    PubMed  Google Scholar 

  42. Conant K, Ma M, Nath A, Major EO. Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. J Virol 1996; 70: 1384–1389.

    PubMed  Google Scholar 

  43. Demarchi F, d'Adda di Fagagna F, Falaschi A, Giacca M. Activation of transcription factor NF-kappaB by the Tat protein of human immunodeficiency virus type 1. J Virol 1996; 70: 4427–4437.

    PubMed  Google Scholar 

  44. Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP. The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 1997; 6: 235–244.

    PubMed  Google Scholar 

  45. Li X, Multon MC, Henin Y, et al. Grb3–3 is up-regulated in HIV-1 infected T-cells and can potentiate cell activation through NFATc. J Biol Chem 2000; 275: 30925–30933.

    PubMed  Google Scholar 

  46. Macian F, Rao A. Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFAT1. Mol Cell Biol 1999; 19: 3645–3653.

    PubMed  Google Scholar 

  47. Kumar A, Manna SK, Dhawan S, Aggarwal BB. HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. J Immunol 1998; 161: 776–781.

    PubMed  Google Scholar 

  48. Ambrosino C, Ruocco MR, Chen X, et al. HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J Biol Chem 1997; 272: 14883–14892.

    PubMed  Google Scholar 

  49. Scala G, Ruocco MR, Ambrosino C, et al. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 1994; 179: 961–971.

    PubMed  Google Scholar 

  50. Zauli G, Gibellini D, Celeghini C, et al. Pleiotropic effects of immobilized versus soluble recombinant HIV-1 Tat protein on CD3-mediated activation, induction of apoptosis, and HIV-1 long terminal repeat transactivation in purified CD4+ T lymphocytes. J Immunol 1996; 157: 2216–2224.

    PubMed  Google Scholar 

  51. Manna SK, Aggarwal BB. Differential requirement for p56lck in HIV-tat versus TNF-induced cellular responses: Effects on NF-kappa B, activator protein-1, c-Jun N-terminal kinase, and apoptosis. J Immunol 2000; 164: 5156–5166.

    PubMed  Google Scholar 

  52. Li-Weber M, Laur O, Dern K, Krammer PH. T cell activation-induced and HIV tat-enhanced CD95(APO-1/Fas) ligand transcription involves NF-kappaB. Eur J Immunol 2000; 30: 661–670.

    PubMed  Google Scholar 

  53. Buonaguro L, Barillari G, Chang HK, et al. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol 1992; 66: 7159–7167.

    PubMed  Google Scholar 

  54. Sastry KJ, Reddy HR, Pandita R, Totpal K, Aggarwal BB. HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human B-lymphoblastoid cell line. J Biol Chem 1990; 265: 20091–20093.

    PubMed  Google Scholar 

  55. Shatrov VA, Ratter F, Gruber A, Droge W, Lehmann V. HIV type 1 glycoprotein 120 amplifies tumor necrosis factor-induced NF-kappa B activation in Jurkat cells. AIDS Res Hum Retroviruses 1996; 12: 1209–1216.

    PubMed  Google Scholar 

  56. Banki K, Hutter E, Gonchoroff NJ, Perl A. Molecular ordering in HIV-induced apoptosis. Oxidative stress, activation of caspases, and cell survival are regulated by transaldolase. J Biol Chem 1998; 273: 11944–11953.

    PubMed  Google Scholar 

  57. Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci USA 1993; 90: 7632–7636.

    PubMed  Google Scholar 

  58. Westendrop MO, Shatrov VA, Schulze-Osthoff K, et al. HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. Embo J 1995; 14: 546–554.

    PubMed  Google Scholar 

  59. Zauli G, Gibellini D, Milani D, et al. Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res 1993; 53: 4481–4485.

    PubMed  Google Scholar 

  60. Wang Z, Morris GF, Reed JC, Kelly GD, Morris CB. Activation of Bcl-2 promoter-directed gene expression by the human immunodeficiency virus type-1 Tat protein. Virology 1999; 257: 502–510.

    PubMed  Google Scholar 

  61. Zauli G, Gibellini D, Caputo A, et al. The human immunodeficiency virus type-1 Tat protein upregulates Bcl-2 gene expression in Jurkat T-cell lines and primary peripheral blood mononuclear cells. Blood 1995; 86: 3823–3834.

    PubMed  Google Scholar 

  62. Sastry KJ, Marin MC, Nehete PN, McConnell K, el-Naggar AK, McDonnell TJ. Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 1996; 13: 487–493.

    PubMed  Google Scholar 

  63. Macho A, Calzado MA, Jimenez-Reina L, Ceballos E, Leon J, Munoz E. Susceptibility of HIV-1-TAT transfected cells to undergo apoptosis. Biochemical mechanisms. Oncogene 1999; 18: 7543–7551.

    PubMed  Google Scholar 

  64. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376: 599–602.

    PubMed  Google Scholar 

  65. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680–1683.

    Article  PubMed  Google Scholar 

  66. Kolenko V, Bloom T, Rayman P, Bukowski R, Hsi E, Finke J. Inhibition of NF-kappa B activity in human T lymphocytes induces caspase-dependent apoptosis without detectable activation of caspase-1 and-3. J Immunol 1999; 163: 590–598.

    PubMed  Google Scholar 

  67. Giri DK, Aggarwal BB. Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J Biol Chem 1998; 273: 14008–14014.

    PubMed  Google Scholar 

  68. Demarchi F, Gutierrez MI, Giacca M. Human immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol 1999; 73: 7080–7086.

    PubMed  Google Scholar 

  69. Borgatti P, Zauli G, Colamussi ML, et al. Extracellular HIV-1 Tat protein activates phosphatidylinositol 3-and Akt/PKB kinases in CD4+ T lymphoblastoid Jurkat cells. Eur J Immunol 1997; 27: 2805–2811.

    PubMed  Google Scholar 

  70. Zauli G, La Placa M, Vignoli M, et al. An autocrine loop of HIV type-1 Tat protein responsible for the improved survival/ proliferation capacity of permanently Tat-transfected cells and required for optimal HIV-1 LTR transactivating activity. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10: 306–316.

    PubMed  Google Scholar 

  71. McCloskey TW, Ott M, Tribble E, et al. Dual role of HIV Tat in regulation of apoptosis in T cells. J Immunol 1997; 158: 1014–1019.

    PubMed  Google Scholar 

  72. Ranki A, Lagerstedt A, Ovod V, Aavik E, Krohn KJ. Expression kinetics and subcellular localization of HIV-1 regulatory proteins Nef, Tat and Rev in acutely and chronically infected lymphoid cell lines. Arch Virol 1994; 139: 365–378.

    PubMed  Google Scholar 

  73. Katsikis PD, Garcia-Ojeda ME, Torres-Roca JF, Greenwald DR, Herzenberg LA. HIV type 1 Tat protein enhances activation-but not Fas (CD95)-induced peripheral blood T cell apoptosis in healthy individuals. Int Immunol 1997; 9: 835–841.

    PubMed  Google Scholar 

  74. Cohen EA, Dehni G, Sodroski JG, Haseltine WA. Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol 1990; 64: 3097–3099.

    PubMed  Google Scholar 

  75. Ogawa K, Shibata R, Kiyomasu T, et al. Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol 1989; 63: 4110–4114.

    PubMed  Google Scholar 

  76. Sawaya BE, Khalili K, Gordon J, Taube R, Amini S. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J Biol Chem 2000; 275: 35209–35214.

    PubMed  Google Scholar 

  77. Balliet JW, Kolson DL, Eiger G, et al. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology 1994; 200: 623–631.

    PubMed  Google Scholar 

  78. Connor RI, Chen BK, Choe S, Landau NR. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995; 206: 935–944.

    PubMed  Google Scholar 

  79. Accola MA, Bukovsky AA, Jones MS, Gottlinger HG. A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 1999; 73: 9992–9999.

    PubMed  Google Scholar 

  80. Yuan X, Matsuda Z, Matsuda M, Essex M, Lee TH. Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses 1990; 6: 1265–1271.

    PubMed  Google Scholar 

  81. Gallay P, Stitt V, Mundy C, Oettinger M, Trono D. Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 1996; 70: 1027–1032.

    PubMed  Google Scholar 

  82. Heinzinger NK, Bukinsky MI, Haggerty SA, et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 1994; 91: 7311–7315.

    PubMed  Google Scholar 

  83. Fouchier RA, Meyer BE, Simon JH, et al. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 1998; 72: 6004–6013.

    PubMed  Google Scholar 

  84. Popov S, Rexach M, Zybarth G, et al. Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. Embo J 1998; 17: 909–917.

    PubMed  Google Scholar 

  85. Goh WC, Rogel ME, Kinsey CM, et al. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo. Nat Med 1998; 4: 65–71.

    PubMed  Google Scholar 

  86. Gummuluru S, Emerman M. Cell cycle-and Vpr-mediated regulation of human immunodeficiency virus type 1 expression in primary and transformed T-cell lines. J Virol 1999; 73: 5422–5430.

    PubMed  Google Scholar 

  87. Subbramanian RA, Yao XJ, Dilhuydy H, et al. Human immunodeficiency virus type 1 Vpr localization: Nuclear transport of a viral protein modulated by a putative amphipathic helical structure and its relevance to biological activity. J Mol Biol 1998; 278: 13–30.

    PubMed  Google Scholar 

  88. He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 1995; 69: 6705–6711.

    PubMed  Google Scholar 

  89. Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 1995; 69: 6304–6313.

    PubMed  Google Scholar 

  90. Planelles V, Jowett JB, Li QX, Xie Y, Hahn B, Chen IS. Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol 1996; 70: 2516–2524.

    PubMed  Google Scholar 

  91. Re F, Braaten D, Franke EK, Luban J. Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol 1995; 69: 6859–6864.

    PubMed  Google Scholar 

  92. Rogel ME, Wu LI, Emerman M. The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol 1995; 69: 882–888.

    PubMed  Google Scholar 

  93. Chang L, Chen C, Urlacher V, Lee T. Differential apoptosis effects of primate lentiviral vpr and vpx in mammalian cells. J Biomed Sci 2000; 7: 322–333.

    PubMed  Google Scholar 

  94. Shostak LD, Ludlow J, Fisk J, et al. Roles of p53 and caspases in the induction of cell cycle arrest and apoptosis by HIV-1 vpr. Exp Cell Res 1999; 251: 156–165.

    PubMed  Google Scholar 

  95. Stewart SA, Poon B, Jowett JB, Chen IS. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 1997; 71: 5579–5592.

    PubMed  Google Scholar 

  96. Watanabe N, Yamaguchi T, Akimoto Y, Rattner JB, Hirano H, Nakauchi H. Induction of M-phase arrest and apoptosis after HIV-1 vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells. Exp Cell Res 2000; 258: 261–269.

    PubMed  Google Scholar 

  97. Macreadie IG, Thorburn DR, Kirby DM, Castelli LA, de Rozario NL, Azad AA. HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast Saccharomyces cerevisiae. FEBS Lett 1997; 410: 145–149.

    PubMed  Google Scholar 

  98. Masuda M, Nagai Y, Oshima N, et al. Genetic studies with the fission yeast Schizosaccharomyces pombe suggest involvement of wee1, ppa2, and rad24 in induction of cell cycle arrest by human immunodeficiency virus type 1 Vpr. J Virol 2000; 74: 2636–2646.

    PubMed  Google Scholar 

  99. Berglez JM, Castelli LA, Sankovich SA, Smith SC, Curtain CC, Macreadie IG. Residues within the HFRIGC sequence of HIV-1 vpr involved in growth arrest activities. Biochem Biophys Res Commun 1999; 264: 287–290.

    PubMed  Google Scholar 

  100. Chen M, Elder RT, Yu M, et al. Mutational analysis of Vpr-induced G2 arrest, nuclear localization, and cell death in fission yeast. J Virol 1999; 73: 3236–3245.

    PubMed  Google Scholar 

  101. Di Marzio P, Choe S, Ebright M, Knoblauch R, Landau NR. Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J Virol 1995; 69: 7909–7916.

    PubMed  Google Scholar 

  102. Macreadie IG, Castelli LA, Hewish DR, Kirkpatrick A, Ward AC, Azad AA. A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects. Proc Natl Acad Sci USA 1995; 92: 2770–2774.

    PubMed  Google Scholar 

  103. Mahalingam S, Collman RG, Patel M, Monken CE, Srinivasan A. Role of the conserved dipeptide Gly75 and Cys76 onHIV-1 Vpr function. Virology 1995; 210: 495–500.

    PubMed  Google Scholar 

  104. Zhou Y, Lu Y, Ratner L. Arginine residues in the C-terminus of HIV-1 Vpr are important for nuclear localization and cell cycle arrest. Virology 1998; 242: 414–424.

    PubMed  Google Scholar 

  105. MinemotoY, Shimura M, Ishizaka Y, Masamune Y, Yamashita K. Multiple centrosome formation induced by the expression of Vpr gene of human immunodeficiency virus. Biochem Biophys Res Commun 1999; 258: 379–384.

    PubMed  Google Scholar 

  106. Stewart SA, Poon B, Song JY, Chen IS. Human immunodeficiency virus type 1 vpr induces apoptosis through caspase activation. J Virol 2000; 74: 3105–3111.

    PubMed  Google Scholar 

  107. Poon B, Jowett JB, Stewart SA, Armstrong RW, Rishton GM, Chen IS. Human immunodeficiency virus type 1 vpr gene induces phenotypic effects similar to those of the DNA alkylating agent, nitrogen mustard. J Virol 1997; 71: 3961–3971.

    PubMed  Google Scholar 

  108. Shimura M, Onozuka Y, Yamaguchi T, Hatake K, Takaku F, Ishizaka Y. Micronuclei formation with chromosome breaks and gene amplification caused by Vpr, an accessory gene of human immunodeficiency virus. Cancer Res 1999; 59: 2259–2264.

    PubMed  Google Scholar 

  109. Shimura M, Tanaka Y, Nakamura S, et al. Micronuclei formation and aneuploidy induced by Vpr, an accessory gene of human immunodeficiency virus type 1. Faseb J 1999; 13: 621–637.

    PubMed  Google Scholar 

  110. Zhang S, Pointer D, Singer G, Feng Y, Park K, Zhao LJ. Direct binding to nucleic acids by Vpr of human immunodeficiency virus type 1. Gene 1998; 212: 157–166.

    PubMed  Google Scholar 

  111. Bouhamdan M, Benichou S, Rey F, et al. Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme. J Virol 1996; 70: 697–704.

    PubMed  Google Scholar 

  112. Selig L, Benichou S, Rogel ME, et al. Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of scooty mangabeys, but binding does not correlate with cell cycle arrest. J Virol 1997; 71: 4842–4846.

    PubMed  Google Scholar 

  113. Withers-Ward ES, Jowett JB, Stewart SA, et al. Human immunodeficiency virus type 1 Vpr interacts with HHR23A, a cellular protein implicated in nucleotide excision DNA repair. J Virol 1997; 71: 9732–9742.

    PubMed  Google Scholar 

  114. Mansky LM, Preveral S, Selig L, Benarous R, Benichou S. The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol 2000; 74: 7039–7047.

    PubMed  Google Scholar 

  115. Gragerov A, Kino T, Ilyina-Gragerova G, Chrousos GP, Pavlakis GN. HHR23A, the human homologue of the yeast repair protein RAD23, interacts specifically with Vpr protein and prevents cell cycle arrest but not the transcriptional effects of Vpr. Virology 1998; 245: 323–330.

    PubMed  Google Scholar 

  116. Morgan SE, Kastan MB. p53 and ATM: Cell cycle, cell death, and cancer. Adv Cancer Res 1997; 71: 1–25.

    PubMed  Google Scholar 

  117. Bartz SR, Rogel ME, Emerman M. Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 1996; 70: 2324–2331.

    PubMed  Google Scholar 

  118. Jacotot E, Ravagnan L, Loeffler M, et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 2000; 191: 33–46.

    PubMed  Google Scholar 

  119. Ayyavoo V, Mahboubi A, Mahalingam S, et al. HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor kappa B. Nat Med 1997; 3: 1117–1123.

    PubMed  Google Scholar 

  120. Roux P, Alfieri C, Hrimech M, Cohen EA, Tanner JE. Activation of transcription factors NF-kappaB and NF-IL-6 by human immunodeficiency virus type 1 protein R (Vpr) induces interleukin-8 expression. J Virol 2000; 74: 4658–4665.

    PubMed  Google Scholar 

  121. Conti L, Rainaldi G, Matarrese P, et al. The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: Possible implications for the pathogenesis of AIDS. J Exp Med 1998; 187: 403–413.

    PubMed  Google Scholar 

  122. Fukumori T, Akari H, Iida S, et al. The HIV-1 Vpr displays strong anti-apoptotic activity. FEBS Lett 1998; 432: 17–20.

    PubMed  Google Scholar 

  123. Conti L, Matarrese P, Varano B, et al. Dual role of the HIV-1 vpr protein in the modulation of the apoptotic response of T cells. J Immunol 2000; 165: 3293–3300.

    PubMed  Google Scholar 

  124. Dittmar MT, McKnight A, Simmons G, Clapham PR, Weiss RA, Simmonds P. HIV-1 tropism and co-receptor use. Nature 1997; 385: 495–496.

    PubMed  Google Scholar 

  125. Moore JP. Coreceptors: Implications for HIV pathogenesis and therapy. Science 1997; 276: 51–52.

    PubMed  Google Scholar 

  126. Davis CB, Dikic I, Unutmaz D, et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 1997; 186: 1793–1798.

    PubMed  Google Scholar 

  127. Neudorf SM, Jones MM, McCarthy BM, Harmony JA, Choi EM. The CD4 molecule transmits biochemical information important in the regulation of T lymphocyte activity. Cell Immunol 1990; 125: 301–314.

    PubMed  Google Scholar 

  128. Weissman D, Rabin RL, Arthos J, et al. Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 1997; 389: 981–985.

    PubMed  Google Scholar 

  129. Cottrez F, Manca F, Dalgleish AG, Arenzana-Seisdedos F, Capron A, Groux H. Priming of human CD4+ antigen-specific T cells to undergo apoptosis by HIV-infected monocytes. A two-step mechanism involving the gp120 molecule. J Clin Invest 1997; 99: 257–266.

    PubMed  Google Scholar 

  130. Laurent-Crawford AG, Krust B, Riviere Y, et al. Membrane expression of HIV envelope glycoproteins triggers apoptosis in CD4 cells. AIDS Res Hum Retrovirusus 1993; 9: 761–773.

    Google Scholar 

  131. Nardelli B, Gonzalez CJ, Schechter M, Valentine FT. CD4+ blood lymphocytes are rapidly killed in vitro by contact wit autologous human immunodeficiency virus-infected cells. Proc Natl Acad Sci USA 1995; 92: 7312–7316.

    PubMed  Google Scholar 

  132. Oyaizu N, McCloskey TW, Coronesi M, Chirmule N, Kalyanaraman VS, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood 1993; 82: 3392–3400.

    PubMed  Google Scholar 

  133. Bottarel F, Feito MJ, Bragardo M, et al. The cell death-inducing ability of glycoprotein 120 from different HIV strains correlates with their ability to induce CD4 lateral association with CD95 on CD4+ T cells. AIDS Res Hum Retroviruses 1999; 15: 1255–1263.

    PubMed  Google Scholar 

  134. Hashimoto F, Oyaizu N, Kalyanaraman VS, Pahwa S. Modulation of Bcl-2 protein by CD4 cross-linking: A possible mechanism for lymphocyte apoptosis in human immunodeficiency virus infection and for rescue of apoptosis by interleukin-2. Blood 1997; 90: 745–753.

    PubMed  Google Scholar 

  135. Ohnimus H, Heinkelein M, Jassoy C. Apoptotic cell death upon contact of CD4+ T lymphocytes with HIV glycoprotein-expressing cells is mediated by caspases but bypasses CD95 (Fas/Apo-1) and TNF receptor 1. J Immunol 1997; 159: 5246–5252.

    PubMed  Google Scholar 

  136. Oyaizu N, Adachi Y, Hashimoto F, et al. Monocytes express Fas ligand upon CD4 cross-linking and induce CD4+ T cells apoptosis: A possible mechanism of bystander cell death in HIV infection. J Immunol 1997; 158: 2456–2463.

    PubMed  Google Scholar 

  137. Somma F, Tuosto L, Montani MS, Di Somma MM, Cundari E, Piccolella E. Engagement of CD4 before TCR triggering regulates both Bax-and Fas (CD95)-mediated apoptosis. J Immunol 2000; 164: 5078–5087.

    PubMed  Google Scholar 

  138. Tateyama M, Oyaizu N, McCloskey TW, Than S, Pahwa S. CD4 T lymphocytes are primed to express Fas ligand by CD4 cross-linking and to contribute to CD8 T-cell apoptosis via Fas/FasL death signaling pathway. Blood 2000; 96: 195–202.

    PubMed  Google Scholar 

  139. Yagi T, Sugimoto A, Tanaka M, et al. Fas/FasL interaction is not involved in apoptosis of activated CD4+ T cells upon HIV-1 infection in vitro. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 18: 307–315.

    PubMed  Google Scholar 

  140. Desbarats J, Freed JH, Campbell PA, Newell MK. Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+T cells. Proc Natl Acad Sci USA 1996; 93: 11014–11018.

    PubMed  Google Scholar 

  141. Oyaizu N, McCloskey TW, Than S, Hu R, Kalyanaraman VS, Pahwa S. Cross-linking of CD4 molecules upregulates Fas antigen expression in lymphocytes by inducing interferon-gamma and tumor necrosis factor-alpha secretion. Blood 1994; 84: 2622–2631.

    PubMed  Google Scholar 

  142. Cicala C, Arthos J, Rubbert A, et al. HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4(+) T cells. Proc Natl Acad Sci USA 2000; 97: 1178–1183.

    PubMed  Google Scholar 

  143. Ullrich CK, Groopman JE, Ganju RK. HIV-1 gp120-and gp 160-induced apoptosis in cultured endothelial cells is mediated by caspases. Blood 2000; 96: 1438–1442.

    PubMed  Google Scholar 

  144. Berndt C, Mopps B, Angermuller S, Gierschik P, Krammer PH. CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4(+) T cells. Proc Natl Acad Sci USA 1998; 95: 12556–12561.

    PubMed  Google Scholar 

  145. Biard-Piechaczyk M, Robert-Hebmann V, Richard V, Roland J, Hipskind RA, Devaux C. Caspase-dependent apoptosis of cells expressing the chemokine receptor CXCR4 is induced by cell membrane-associated human immunodeficiency virus type 1 envelope glycoprotein (gp120). Virology 2000; 268: 329–344.

    PubMed  Google Scholar 

  146. Blanco J, Jacotot E, Cabrera C, et al. The implication of the chemokine receptor CXCR4 in HIV-1 envelope protein-induced apoptosis is independent of the G protein-mediated signalling. Aids 1999; 13: 909–917.

    PubMed  Google Scholar 

  147. Herbein G, Mahlknecht U, Batliwalla F, et al. Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 1998; 395: 189–194.

    PubMed  Google Scholar 

  148. Kestler HW, Ringler DJ, Panicaly DL, Sehgal PK, Daniel MD, Desrosiers RC. Importance of the nef gene for maintenance of high virus load and for development of AIDS. Cell 1991; 65: 651–662.

    PubMed  Google Scholar 

  149. Aiken C, Konner J, Landau NR, Lenburg ME, Trono D. Nef inducesCD4endocytosis: Requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 1994; 76: 853–864.

    PubMed  Google Scholar 

  150. Garcia JV, Miller AD. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 1991; 350: 508–511.

    PubMed  Google Scholar 

  151. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 1998; 391: 397–401.

    PubMed  Google Scholar 

  152. Piguet V, Chen YL, Mangasarian A, Foti M, Carpentier JL, Trono D. Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. Embo J 1998; 17: 2472–2481.

    PubMed  Google Scholar 

  153. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 1996; 2: 338–342.

    PubMed  Google Scholar 

  154. Goldsmith MA, Warmerdam MT, Atchison RE, Miller MD, Greene WC. Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J Virol 1995; 69: 4112–4121.

    PubMed  Google Scholar 

  155. Miller MD, Warmerdam MT, Page KA, Feinberg MB, Greene WC. Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 Production increases progeny particle infectivity independently of gp160 or viral entry. J Virol 1995; 69: 579–584.

    PubMed  Google Scholar 

  156. Aiken C, Trono D. Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 1995; 69: 5048–5056.

    PubMed  Google Scholar 

  157. Chowers MY, Pandori MW, Spina CA, Richman DD, Guatelli JC. The growth advantage conferred by HIV-1 nef is determined at the level of viral DNA formation and is independent of CD4 downregulation. Virology 1995; 212: 451–457.

    PubMed  Google Scholar 

  158. Schwartz O, Marechal V, Danos O, Heard JM. Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J Virol 1995; 69: 4053–4059.

    PubMed  Google Scholar 

  159. Renkema HG, Saksela K. Interactions of HIV-1 NEF with cellular signal transducing proteins. Front Biosci 2000; 5: D268–283.

    PubMed  Google Scholar 

  160. Hodge S, Novembre FJ, Whetter L, Gelbard HA, Dewhurst S. Induction of fas ligand expression by an acutely lethal simian immunodeficiency virus, SIVsmmPBj14. Virology 1998; 252: 354–363.

    PubMed  Google Scholar 

  161. Xu XN, Laffert B, Screaton GR, et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain. J Exp Med 1999; 189: 1489–1496.

    PubMed  Google Scholar 

  162. Xu XN, Screaton GR, Gotch FM, et al. Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997; 186: 7–16.

    PubMed  Google Scholar 

  163. Zauli G, Gibellini D, Secchiero P, et al. Human immunode-ficiency virus type 1 Nef protien sensitizes CD4(+) T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95 ligand pathway. Blood 1999; 93: 1000–1010.

    PubMed  Google Scholar 

  164. Bell I, Ashman C, Maughan J, Hooker E, Cook F, Reinhart TA. Association of simian immunodeficiency virus Nef with the T-cell receptor (TCR) zeta chain leads to TCR downmodulation. J Gen Virol 1998; 79: 2717–2727.

    PubMed  Google Scholar 

  165. Howe AY, Jung JU, Desrosiers RC. Zeta chain of the T-cell receptor interacts with nef of simian immunodeficiency virus and human immunodeficiency virus type 2. J Virol 1998; 72: 9827–9834.

    PubMed  Google Scholar 

  166. Schaefer TM, Bell I, Fallert BA, Reinhart TA. The T-cell receptor zeta chain contains two homologous domains with which simian immunodeficiency virus Nef interacts and mediates down-modulation. J Virol 2000; 74: 3273–3283.

    PubMed  Google Scholar 

  167. Barber SA, Flaherty MT, Plafker SM, Clements JE. A novel kinase activity associated with Nef derived from neurovirulent simian immunodeficiency virus. Virology 1998; 251: 165–175.

    PubMed  Google Scholar 

  168. Brown A, Wang X, Sawai E, Cheng-Mayer C. Activation of the PAK-related kinase by human immunodeficiency virus type 1 Nef in primary human peripheral blood lymphocytes and macrophages leads to phosphorylation of a PIX-p95 complex. J Virol 1999; 73: 9899–9907.

    PubMed  Google Scholar 

  169. Facker OT, Lu X, Frost JA, et al. p21-activated kinase 1 plays a critical role in cellular activation by Nef. Mol Cell Biol 2000; 20: 2619–2627.

    PubMed  Google Scholar 

  170. Manninen A, Hiipakka M, Vihinen M, Lu W, Mayer BJ, Saksela K. SH3-Domain binding function of HIV-1 Nef is required for association with a PAK-related kinase. Virology 1998; 250: 273–282.

    PubMed  Google Scholar 

  171. Nunn MF, Marsh JW. Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. J Virol 1996; 70: 6157–6161.

    PubMed  Google Scholar 

  172. Renkema GH, Manninen A, Mann DA, Harris M, Saksela K. Identification of the Nef-associated kinase as p21-activated kinase 2. Curr Biol 1999; 9: 1407–1410.

    PubMed  Google Scholar 

  173. Sawai ET, Baur A, Struble H, Peterlin BM, Levy JA, Cheng-Mayer C. Human immunodeficieny virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci USA 1994; 91: 1539–1543.

    PubMed  Google Scholar 

  174. Bokoch GM. Caspase-mediated activation of PAK2 during apoptosis: Proteolytic kinase activation as a general mechanism of apoptotic signal transduction? Cell Death Differ 1998; 5: 637–645.

    PubMed  Google Scholar 

  175. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997; 276: 1571–1574.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roshal, M., Zhu, Y. & Planelles, V. Apoptosis in AIDS. Apoptosis 6, 103–116 (2001). https://doi.org/10.1023/A:1009636530839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009636530839

Navigation