Skip to main content
Log in

In situDiagnostics of Plasma Processes in Microelectronics: The Current Status and Immediate Prospects. Part I.

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The necessity of in situmonitoring plasma processes in present-day microelectronics stems from the fact that they must provide high precision. New-generation micro- and nanodevices, which will have sharp interfaces and atomic-level sizes, demand continuous monitoring of process stages. Preference should be given to built-in monitoring facilities, which exploit highly sensitive physical effects and do not disturb particle fluxes from a plasma to a substrate. Part I covers advanced diagnostic and monitoring methods, as applied to plasmochemical processes used in microelectronics, with emphasis to optical spectral techniques. They are based on in-process measuring volume (nonlocal) parameters of a reactive plasma. Processes monitored may include etching and deposition of semiconductor, metal, and insulating layers, as well as resist stripping and surface cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Valiev, K.A. and Orlikovskii, A.A., New-Generation Chips for Microelectronics: Silicon Nanotransistor Keeps Its Positions, Elektronika: Nauka Tekhnol. Biznes, 2000, no. 3, pp. 46–49.

    Google Scholar 

  2. The International Technology Roadmap for Semiconductors Technology Needs, 1999 ed.

  3. Orlikovskii, A.A., Plasma Processes in Micro-and Nanoelectronics. Part 1: Reactive Ion Etching, Mikroelektronika, 1999, vol. 28, no. 5, pp. 344–362.

    Google Scholar 

  4. Zhu, X.-D., Hu, M., Zhan, R.-J., Wen, X.-H., and Zhou, H.-Y., Diagnostics of Plasma Emission Spectra during Electron Assisted Chemical Vapor Deposition of Diamond Films, Phys. Plasmas, 1998, vol. 5, no. 5, pp. 1541–1544.

    Google Scholar 

  5. Teii, K., Diagnostics of the Diamond Depositing Inductively Coupled Plasma by Electrostatic Probes and Optical Emission Spectroscopy, J. Vac. Sci. Technol. A, 1999, vol. 17, no. 1, pp. 138–143.

    Google Scholar 

  6. Flamm, D.L., Donnely, V.M., and Mucha, J.A., The Reaction of Fluorine Atoms with Silicon, J. Appl. Phys., 1981, vol. 52, no. 5, pp. 3633–3639.

    Google Scholar 

  7. Baryshev, Yu.P., Ershov, A.P., Isaev, K.Sh., Kalinin, A.V., Orlikovskii, A.A., Rudenko, K.V., Semenenko, V.N., Sukhanov, Ya.N., and Piskun, N.Yu., Monitoring of SiO2/Si Plasma Etching and End-Point Detection, Mikroelektronika, 1996, vol. 25, no. 5, pp. 373–379.

    Google Scholar 

  8. McNevin, S.C. and Cerulo, M., Diagnosing SiO2 Contact Etch Stop with Optical Emission, J. Vac. Sci. Technol., A, 1997, vol. 15, no. 3, pp. 659–663.

    Google Scholar 

  9. Coburn, J.W. and Chen, M., Optical Emission Spectroscopy of Reactive Plasmas: A Method for Correlating Emission Intensities to Reactive Particle Density, J. Appl. Phys., 1980, vol. 51, no. 6, pp. 3134–3136.

    Article  Google Scholar 

  10. Granier, A., Chereau, D., Henda, K., Safari, R., and Leprince, P., Validity of Actinometry to Monitor Oxygen Atom Concentration in Microwave Discharges Created by Surface Wave in O2–N Mixtures, J. Appl. Phys., 1994, vol. 75, no. 6, pp. 104–114.

    Article  Google Scholar 

  11. Ibbotson, D.E., Flamm, D.L., and Donnely, V.M., Crystallographic Etching of GaAs with Bromine and Chlorine Plasmas, J. Appl. Phys., 1983, vol. 54, no. 10, pp. 5974–5981.

    Google Scholar 

  12. Gottscho, R.A., Davis, G.P., and Burton, R.H., Spatially Resolved Laser-Induced Fluorescence and Optical Emission Spectroscopy of Carbon Tetrachloride Glow Discharges, Plasma Chem. Plasma Process., 1983, vol. 3, no. 2, pp. 193–218.

    Google Scholar 

  13. Gottscho, R.A. and Donnely, V.M., Optical Emission Actinometry and Spectral Line Shapes in RF Glow Discharges, J. Appl. Phys., 1984, vol. 56, no. 2, pp. 245–262.

    Google Scholar 

  14. Jenq, J.S., Ding, J., Taylor, J.W., and Hershkowitz, N., Absolute Fluorine Atom Concentrations in RIE and ECR CF4 Plasmas Measured by Actinometry, Plasma Sources Sci. Technol., 1994, vol. 3, p. 154.

    Google Scholar 

  15. Shogun, V., Tyablikov, A., Shelyhmanov, E., Abachev, M., Sharf, W., and Wallendorf, T., Application of an Acousto—Optic Spectrometer for Plasma Etching Process Quality Control, Surf. Coat. Technol., 1995, vols. 74–75, pp. 571–574.

    Google Scholar 

  16. Rudenko, K.V., Orlikovsky, A.A., and Roeder, G., Monitoring of the Poly-Si/SiO2/Si Plasma Etching by the Optical Emission Actinometry, Tr. Fiz.-Tekn. Inst. Akad. Nauk, 2000, vol. 16, pp. 32–37.

    Google Scholar 

  17. Rudenko, K.V., Orlikovskii, A.A., and Roeder, G., Actinometric Control of Plasma Etching of Poly-Si/SiO2/Si Structures: Potentialities and Limitations of the Method, "Mikro-i nanoelektronika (Proc. Conf. on Micro-and Nanoelectronics), Zvenigorod, 1998, pp. O3–5.

  18. Malyshev, M.V. and Donnely, V.M., Determination of Electron Temperature in Plasmas by Multiple Rare Gas Optical Emission and Implication for Advanced Actinometry, J. Vac. Sci. Technol., A, 1997, vol. 15, no. 3, pp. 550–558.

    Google Scholar 

  19. Malyshev, M.V., Fuller, N.C., Bogart, K.H.A., and Donnely, V.M., Laser-Induced Fluorescence and Langmuir Probe Determination of Cl2+ and C+ Absolute Densities in Transformer-Coupled Chlorine Plasmas, Appl. Phys. Lett., 1999, vol. 74, no. 12, pp. 1666–1668.

    Google Scholar 

  20. Steffens, K.L. and Sobolewski, M.A., Planar Laser-Induced Fluorescence of CF2 in O2/CF4 and O2/C2F6 Chamber Cleaning Plasmas: Spatial Uniformity and Comparison to Electrical Measurements, J. Vac. Sci. Technol., A, 1999, vol. 17, no. 2, pp. 517–527.

    Google Scholar 

  21. Itabashi, N., Kato, K., Nishiwaki, N., Goto, T., Matsuda, A., Yamada, C., and Hirota, E., Spatial Distribution of SiH3 Radicals in RF Silane Plasma, Jpn. J. Appl. Phys., 1990, vol. 29, part 2, no. 3, pp. L505-L507.

    Google Scholar 

  22. Takanashi, K., Hori, M., Maruyama, K., Kishimoto, S., and Goto, T., Measurements of the CF, CF2, and CF3 Radicals in CHF3 Electron Cyclotron Resonance Plasma, Jpn. J. Appl. Phys., 1993, vol. 32, no. 5A, pp. L694-L697.

    Google Scholar 

  23. Miyata, K., Hori, M., and Goto, T., CFx (x = 1–3) Radical Densities during Si, SiO2, and Si3N4 Etching Employing Electron Cyclotron Resonance CHF3 Plasma, J. Vac. Sci. Technol., A, 1997, vol. 15, no. 3, pp. 568–572.

    Google Scholar 

  24. Vanderbercq, A.C., Wautelet, M., Dauchot, J.P., Hecq, M., Pointu, A.-M., and Ricard, A., Diagnostics of Inductively Amplified Magnetron Discharges by Optical Emission, Absorption Spectroscopy, and Langmuir Probe Measurements, J. Appl. Phys., 1998, vol. 84, no. 1, pp. 100–106.

    Google Scholar 

  25. Kawai, Y., Sasaki, K., and Kadota, K., Comparison of Fluorine Atom Density Measured by Actinometry and Vacuum Ultraviolet Absorption Spectroscopy, Jpn. J. Appl. Phys., 1997, vol. 36, part 2, no. 9A/B, pp. L1261-L1264.

    Google Scholar 

  26. Tachibana, K. and Kamisugi, H., Vacuum-Ultraviolet Laser Absorption Spectroscopy for Absolute Measurement of Fluorine Atom Density in Fluorocarbon Plasmas, Appl. Phys. Lett., 1999, vol. 74, no. 16, pp. 2390–2392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlikovskii, A.A., Rudenko, K.V. In situDiagnostics of Plasma Processes in Microelectronics: The Current Status and Immediate Prospects. Part I.. Russian Microelectronics 30, 69–87 (2001). https://doi.org/10.1023/A:1009430025956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009430025956

Keywords

Navigation