Skip to main content
Log in

Common methylation characteristics of sex chromosomes in somatic and germ cells from mouse, lemur and human

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

DNA methylation of sex chromosomes was analysed using anti-5-methylcytosine antibodies on metaphase chromosomes of somatic cells from three species: human, lemur and mouse. Germ cells were also studied in male mouse. In female cells (human and mouse), the late replicating X was always the less methylated chromosome. Compared with autosomes, the methylation of both X chromosomes was always lower in fibroblasts than in lymphocytes and the difference was always greater in mouse than in human. In human, mouse and lemur male cells, the labelling of the unique X chromosome was quite similar to that of the early replicating X from female cells. Except for the heterochromatic region of the human Y chromosome, strongly methylated, the overall methylation of the Y chromosome was low. In mouse testicular cells, a variety of DNA methylation patterns was observed according to the cell type and the state of differentiation. Finally, the only structures of sex chromosomes which remain methylated in all conditions correspond to their pseudoautosomal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  • Adolph S, Hameister H (1990) In situ nick translation of human metaphase chromosomes with the restriction enzymes MspI and HpaII reveals an R-band pattern. Cytogenet Cell Genet 54: 132-136.

    PubMed  CAS  Google Scholar 

  • Andersen CL, Koch J, Kjeldsen E (1998) CpG islands detected by self-primed in situ labelling (SPRINS). Chromosoma 107: 260-266.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Hultén MA, Keohane AM, Turner BM (1997) Different strategies of X-inactivation in germinal and somatic cells: histone H4 underacetylation does not mark the inactive X chromosome in the mouse male germline, Exp Cell Res 230: 399-402.

    Article  PubMed  CAS  Google Scholar 

  • Barbin A, Montpellier C, Kokalj-vokac N et al. (1994) New sites of methylcytosine-rich DNA detected on metaphase chromosomes. Hum Genet 94: 684-692.

    Article  PubMed  CAS  Google Scholar 

  • Belyaev ND, Keohane AM, Turner BM (1996) Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum Genet 97: 573-578.

    PubMed  CAS  Google Scholar 

  • Bernardino J, Lamoliatte E, Lombard M et al. (1996) DNA methylation of the X chromosomes of the human female: an in situ semi-quantitative analysis. Chromosoma 104: 528-535.

    PubMed  CAS  Google Scholar 

  • Bourc'his D, Miniou P, Jeanpierre M et al. (1999) Abnormal methylation does not prevent X inactivation in ICF patients. Cytogenet Cell Genet 84: 245-252.

    Article  PubMed  Google Scholar 

  • Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping byfluor-escence in situ hybridization. Proc Natl Acad Sci USA 87: 7757-7761.

    Article  PubMed  CAS  Google Scholar 

  • Broccoli D, Miller OJ, Miller DA (1990) Relashionship of mouse minor satellite DNA to centromere activity. Cytogenet Cell Genet 54: 182-186.

    PubMed  CAS  Google Scholar 

  • Brown CJ, Carrel L, Willard HF (1997) Expression of genes from the human active and inactive X chromosomes. Am J Hum Genet 60: 1333-1343.

    PubMed  CAS  Google Scholar 

  • Chandley AC, McBeath S (1987) DNase I hypersensitive sites along the XY bivalent at meiosis in man include the XpYp pairing region. Cytogenet Cell Genet 44: 22-31.

    PubMed  CAS  Google Scholar 

  • Chandley AC, Goetz P, Hargreave TB Joseph AM, Speed RM (1984) On the nature and extent of XY pairing at meiotic prophase in man. Cytogenet Cell Genet 38: 241-274.

    Article  PubMed  CAS  Google Scholar 

  • Coffigny H, Bourgeois C, Ricoul M et al. (1999) Alterations of DNA methylation patterns in germ and Sertoli cells from developing mouse testis. Cytogenet Cell Genet 87: 175-181.

    Article  PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599-601.

    Article  PubMed  CAS  Google Scholar 

  • Craig JM, Bickmore WA (1993) Chromosome bands-flavours to savour. Bioessays 15: 349-354.

    Article  PubMed  CAS  Google Scholar 

  • de la Torre J, Sumner AT, Gonsalvez J, Stuppia L (1992) The distribution of genes on human chromosomes as studied by in situ nick translation. Genome 35: 890-894.

    PubMed  CAS  Google Scholar 

  • Disteche CM (1995) Escape from X inactivation in human and mouse. Trends Genet 11: 17-22.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1981) La Pratique de l'Analyse Chromosomique. Paris: Masson.

    Google Scholar 

  • Ellis N, Goodfellow PN (1989) The mammalian pseudoautosomal region. Trends Genet 5: 406-410.

    Article  PubMed  CAS  Google Scholar 

  • Emery P, Durand B, Mach B, Reith W (1996) RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucl Acids Res 24: 803-807.

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Walter J, Allen ND, Reik W (1994) Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120: 2933-2943.

    PubMed  CAS  Google Scholar 

  • Giacalone J, Friedes J, Francke U (1992) A novel GC-rich human macrosatellite VNTR in Xq24 is differentially methylated on active and inactive X chromosomes. Nature Genet 1: 137-143.

    Article  PubMed  CAS  Google Scholar 

  • Gläser B, Myrtek D, Rumpler Y et al. (1999) Transposition of SRY into the ancestral pseudoautosomal region creates a new pseudoautosomal boundary in a progenitor of simian primates. Hum Mol Genet 8: 2071-2078.

    Article  PubMed  Google Scholar 

  • Goetz P, Chandley AC, Speed RM (1984) Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J Cell Sci 65: 249-263.

    PubMed  CAS  Google Scholar 

  • Graves JAM, Wakefield MJ, Toder R (1998) The origin and evolution of the pseudoautosomal regions of human sex chromosome. Hum Mol Genet 7: 1991-1996.

    Article  PubMed  CAS  Google Scholar 

  • Hale DW, Hunt PA, Tucker PK, Eicher EM (1991) Synapsis and obligate recombination between the sex chromosomes of male laboratory mice carrying the Y* rearrangement. Cytogenet Cell Genet 57: 231-239.

    Article  PubMed  CAS  Google Scholar 

  • Hendriks RW, Hinds H, Chen ZY, Craig IW (1992) The hypervariable DXS255 locus contains a LINE-1 repetitive element with a CpG island that is extensively methylated only on the active X chromosome. Genomics 14: 598-603.

    Article  PubMed  CAS  Google Scholar 

  • Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa dark-and light-band DNA. Cell 31: 121-129.

    Article  PubMed  CAS  Google Scholar 

  • Jamieson RV, Tam PPL, Gardiner-Garden M (1996) X-chromosome activity: impact of imprinting and chromatin structure. Int J Dev Biol 40: 1065-1080.

    PubMed  CAS  Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in male mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-289.

    Article  PubMed  CAS  Google Scholar 

  • Jones PA (1999) The DNA methylation paradox. Trends Genet 15: 34-37.

    Article  PubMed  CAS  Google Scholar 

  • Jones PL, Veenstra GJC, Wade PA et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187-191.

    Article  PubMed  CAS  Google Scholar 

  • Kerem B, Goitein R, Richler C, Marcus M, Cedar, H (1983) In situ nick translation distinguishes between active and inactive X chromosomes. Nature 304: 88-90.

    Article  PubMed  CAS  Google Scholar 

  • Kerem B, Goitein R, Diamond G, Cedar H, Marcus M (1984) Mapping of DNase I sensitive regions on mitotic chromosomes. Cell 38: 493-499.

    Article  PubMed  CAS  Google Scholar 

  • Kerr SM, Taggart MH, Lee M, Cooke HJ (1996) Ott, a mouse X-linked multigene family expressed specifically during meiosis. Hum Mol Genet 5: 1139-1148.

    Article  PubMed  CAS  Google Scholar 

  • Kokalj-Vokac N, Almeida A, Viegas-Péquignot E, Jeanpierre M, Malfoy B, Dutrillaux B (1993) Specific induction of uncoiling and recombination by azacytidine in classical satellite-containing constitutive heterochromatin. Cytognet Cell Genet 63: 11-15.

    CAS  Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391-400.

    Article  PubMed  CAS  Google Scholar 

  • Miller DA, Okamoto E, Erlanger BF, Miller OJ (1982) Is DNA methylation responsible for mammalian X chromosome inactivation? Cytogenet Cell Genet 33: 345-349.

    PubMed  CAS  Google Scholar 

  • Miniou P, Jeanpierre M, Blanquet V et al. (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum Mol Genet 3: 2093-2102.

    PubMed  CAS  Google Scholar 

  • Monesi V (1965) Synthetic activities during spermatogenesis in the mouse. Exp Cell Res 39: 197-224.

    Article  PubMed  CAS  Google Scholar 

  • Montpellier C, Bourgeois CA, Kokalj-vokac N et al. (1994) Detection of methylcytosine-rich heterochromatin on banded chromosomes. Application to cell with various status of methylation. Cancer Genet Cytogenet 78 87-93.

    Article  PubMed  CAS  Google Scholar 

  • Morishima A, Grumbach MM, Taylor JH (1962) Asynchronous duplication of human chromosomes and the origin of the sex chromatin. Proc Natl Acad Sci USA 48: 756-763.

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Ng HH, Johnson CA et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386-389.

    Article  PubMed  CAS  Google Scholar 

  • Ng Hh, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Dev 9: 158-163.

    Article  CAS  Google Scholar 

  • Patel CV, Gopinathan KP (1987) Determination of trace amounts of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem 164: 164-169.

    Article  PubMed  CAS  Google Scholar 

  • Perry P, Wolf S (1974) New Giemsa method for the differential staining of sister chromatids. Nature (London) 251: 156-158.

    Article  CAS  Google Scholar 

  • Prantera G, Ferraro M (1990) Analysis of methylation and distribution of CpG sequences on human active X chromosomes by in situ nick translation. Chromosoma 99: 18-23.

    Article  PubMed  CAS  Google Scholar 

  • Raman R, Das P (1991) Mammalian sex chromosomes. III. Activity of pseudoautosomal steroid sulfatase enzyme during spermatogenesis in Mus musculus. Somat Cell Mol Genet 17: 429-433.

    Article  PubMed  CAS  Google Scholar 

  • Rappold GA (1993) The pseudoautosomal regions of the human sex chromosomes. Hum Genet 92: 315-324.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud C, Bruno C, Boullanger P, Grange J, Barbesti S, Niveleau A (1991) Monitoring of urinary excretion of modified nucleotides in cancer patients using a set of six monoclonal antibodies. Cancer Lett 61: 255-262.

    Article  Google Scholar 

  • Richler C, Uliel E, Kerem BS, Wahrman J (1987) Regions of active chromatin conformation in 'inactive' male meiotic sex chromosomes of the mouse. Chromosoma 95: 167-170.

    Article  PubMed  CAS  Google Scholar 

  • Richler C, Uliel E, Rosenmann A, Wahrman J (1989) Chromosomally derived sterile mice have a 'fertile' active XY chromatin conformation but no XY body. Chromosoma 97: 465-474.

    Article  PubMed  CAS  Google Scholar 

  • Siroky J, Ruffini, Castiglione M, Vyskot B (1998) DNA methylation patterns of Melandrium album chromosomes. Chromosome Res 6: 441-446.

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1980) Synaptonemal complexes and associated structures in microspread human spermatocytes. Chromosoma 81: 315-337.

    Article  PubMed  CAS  Google Scholar 

  • Tribioli C, Tamanini F, Patrosso C et al. (1992) Methylation and sequence analysis around EagI sites: identification of 28 new CpG islands in Xq24-Xq28. Nucl Acids Res 20: 727-733.

    PubMed  CAS  Google Scholar 

  • Viegas-Péquignot E, Dutrillaux B, Thomas G (1988) Inactive X chromosome has the highest concentration of unmethylated HhaI sites. Proc Natl Acad Sci 85: 7657-7660.

    Article  PubMed  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193: 848-856.

    PubMed  CAS  Google Scholar 

  • Yeivin A, Razin A (1993) Gene methylation patterns and expression. In: JP Jost, Saluz HP, eds. DNA Methylation: Molecular Biology and Biological Significance. Basel. Switzerland: Birkhauser Verlag, pp 523-568.

    Google Scholar 

  • Zhang XY, Jabrane-Ferrat CK, Asiedu CK, Samac S, Peterlin BM, Ehrlich M (1993) The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol 13: 6810-6818.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardino, J., Lombard, M., Niveleau, A. et al. Common methylation characteristics of sex chromosomes in somatic and germ cells from mouse, lemur and human. Chromosome Res 8, 513–525 (2000). https://doi.org/10.1023/A:1009271706488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009271706488

Navigation