Skip to main content
Log in

AFLPs Represent Highly Repetitive Sequences in Asparagus Officinalis L.

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The chromosomal and genomic organization of 5 cloned AFLP fragments in asparagus (Asparagus officinalis L.) were investigated. Two of the 5 AFLP loci were sex-linked. The fragments, amplified with EcoRI/MseI primers, ranged from 107 to 267 bp and were AT-rich. Southern hybridization gave interspersed, middle repetitive to high copy sequence signals. Fluorescence in-situ hybridization (FISH) exhibited hybridization signals on all chromosomes with dispersed distribution pattern and varying signal intensities. Repetitive signals in the form of clusters were observed on all chromosomes. In addition, the 5S rRNA gene was physically mapped on one pair of chromosomes and the 18S-5.8S-25S rRNA genes on three pairs. The results of the FISH and Southern analyses showed that the AFLP marker technology relies on repetitive sequences. Since repetitive DNA sequences represent a fraction of the plant genome undergoing rapid changes during the course of evolution, the question of whether such molecular markers originating from repetitive DNA sequences remain stable is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Blanco C, Peeters AJM, Koornneef M et al. (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14: 259-271.

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 211-215.

    Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249: 65-73.

    Google Scholar 

  • Brigneti G, Garcia-Mas J, Baulcombe DC (1997) Molecular mapping of the potato virus Y resistance gene Ry sto in potato. Theor Appl Genet 94: 198-203.

    Google Scholar 

  • Cervera MT, Gusmao J, Steenackers M et al. (1996) Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor Appl Genet 93: 733-737.

    Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215-220.

    Google Scholar 

  • Cho YG, Blair MW, Panaud O, McCouch SR (1996) Cloning and mapping of variety-specific rice genomic DNA sequences: amplified fragment length polymorphisms (AFLP) from silver-stained polyacrylamide gels. Genome 39: 373-378.

    Google Scholar 

  • Cnops G, den Boer B, Gerats A, Van Montagu M, van Lijsebettens M (1996) Chromosomal landing at the Arabidopsis TORNADO1 locus using an AFLP-based strategy. Mol Gen Genet 253: 32-41.

    Google Scholar 

  • de Jong W, Forsyth A, Leister D, Gebhardt C, Baulcombe DC (1997) A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theor Appl Genet 95: 246-252.

    Google Scholar 

  • Galli MG, Bracale M, Falavigna A, Soave C (1988) Sexual differentiation in Asparagus officinalis L. Sex Plant Reprod 1: 202-207.

    Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7: 1869-1885.

    Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucl Acids Res 19: 6553-6558.

    Google Scholar 

  • Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93: 1202-1210.

    Google Scholar 

  • Koch G, Jung C (1997) Phylogenetic relationships of industrial chicory varieties revealed by RAPDs and AFLPs. Agronomie 17: 323-333.

    Google Scholar 

  • Löptien H (1976) Giemsa-Banden auf Mitosechromosomen des Spargels (Asparagus officinalis L.) und des Spinats (Spinacia oleracea L.). Z Pflanzenzüchtg 76: 225-230.

    Google Scholar 

  • Löptien H (1979) Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z Pflanzenzüchtg 82: 162-173.

    Google Scholar 

  • Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP-and PCR-based methods. Theor Appl Genet 93: 1103-1111.

    Google Scholar 

  • Maheswaran M, Subudhi PK, Nandi S et al. (1997) Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94: 39-45.

    Google Scholar 

  • Meksem K, Leister D, Peleman J, Zabeau M, Salamini F, Gebhardt C (1995) A high-resolution map of the vicinity of the R1 locus on Chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249: 74-81.

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828-9832.

    Google Scholar 

  • Qu L-J, Foote TN, Roberts MA et al. (1998) A simple PCR-based method for scoring the ph1b deletion in wheat. Theor Appl Genet 96: 371-375.

    Google Scholar 

  • Reamon-Büttner SM, Schondelmaier J, Jung C (1998) AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol Breeding 4: 91-98.

    Google Scholar 

  • Ruiz Rejon C, Jamilena M, Garrido Ramos M, Parker JS, Ruiz Rejon M (1994) Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 72: 209-215.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • San Miguel P, Tikhonov, A, Jin Y-K et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768.

    Google Scholar 

  • Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88: 629-636.

    Google Scholar 

  • Schondelmaier J, Steinrücken G, Jung C (1996) Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.) Plant Breeding 115: 231-237.

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennet MD, Heslop-Harrison JS (1989) In-situ localization of parental genomes in a wild hybrid. Ann Bot 64: 315-324.

    Google Scholar 

  • Scutt CP, Kamisugi Y, Sakai F, Gilmartin PM (1997). Laser isolation of plant sex chromosomes: studies on the DNA composition of the X and Y sex chromosomes of Silene latifolia. Genome 40: 705-715.

    Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J et al. (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10: 1056-1068.

    Google Scholar 

  • Thein SL, Wallace RB (1986) The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders. In: Davies KE, ed. Human Genetic Diseases — A Practical Approach. Oxford: IRL Press, pp 33-50.

    Google Scholar 

  • Thomas CM, Vos P, Zabeau M et al. (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J 8: 785-794.

    Google Scholar 

  • van der Voort JNAMR, van Zandvoort P, van Eck HJ et al. (1997) Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255: 438-447.

    Google Scholar 

  • van Eck HJ, van der Voort JR, Draaistra J et al. (1995) The inheritance and chromosomal localization of AFLP markers in a non-inbred offspring. Mol Breeding 1: 397-410.

    Google Scholar 

  • Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94: 75-82.

    Google Scholar 

  • Vos P, Hogers R, Bleeker M et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407-4414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reamon-Büttner, S.M., Schmidt, T. & Jung, C. AFLPs Represent Highly Repetitive Sequences in Asparagus Officinalis L.. Chromosome Res 7, 297–304 (1999). https://doi.org/10.1023/A:1009231031667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009231031667

Navigation