Skip to main content
Log in

Effect of dopant concentration on the electrical properties of polyvinyl alcohol (PVA)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The real part of the dielectric constant (ε′) of pure and doped polyvinyl alcohol (PVA) with 1, 2 and 3 wt% vanadate was measured as a function of temperature and frequency. (ε′) decreases with increasing frequency due to a rapid variation of the field accompanied with the applied frequency as well as the disordering of the segmental parts of the polymer chain. The vanadate effects appear in a form of increasing the crystallinity in the sample leading to a decrease in (ε′), except in the case of 2 wt% vanadate in which (ε′) is drastically increased. The d.c. conductivity for the vanadate doped PVA is measured as a function of temperature. The values of the activation energy as obtained from the experimental data give information about the presence of more than one conduction mechanism as well as the useful applications of PVA, especially in the field of electronics. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bahri, J. Phys. D 15 (1992) 1036.

    Google Scholar 

  2. A. F. Basha, H. A. Abdel Samad and M. Amin, Egypt J. Phys. 16 (1985) 299.

    Google Scholar 

  3. A. K. Sharma, B. Rukmini and D. Santhi Sagar, Mater. Lett. 12 (1991) 59.

    Google Scholar 

  4. H. S. Nalwa, J. Mater. Sci. 27 (1992) 210.

    Google Scholar 

  5. N. V. Reddy and V. V. R. Narasimha Rao, J. Mater. Sci. Lett. 11 (1992) 1036.

    Google Scholar 

  6. A. K. Sharma, V. Adinarayana and D. Shanthi Sagar, Mater. Lett. 12 (1991) 247.

    Google Scholar 

  7. K. Stevea (Ed), “Order in the Amorphous State of Polymers”, (Plenum Pub., NY, 1987).

    Google Scholar 

  8. P. Braunlich, Top. Appl. Phys. 37 (1979).

  9. D. Ronarch and P. Audren, J. Appl. Phys. 58 (1985) 474.

    Google Scholar 

  10. G. Banhegyi, G. Marosi, G. Bertalen and F. E. Karasz, Colloid Polym. Sci. 27 (1992) 113.

    Google Scholar 

  11. D. R. Garrel, P. Gaudreau and L. M. Zhang et al. J. Surg. Res. 51 (1991) 297.

    PubMed  Google Scholar 

  12. K. Inoue, T. Fujisato and K. Eurezak et al., Pancreas 7 (1992) 562.

    PubMed  Google Scholar 

  13. F. H. Abdel-Kader and S. A. Gaafar, J. Polym. Mater. 10 (1993) 245.

    Google Scholar 

  14. N. P. Peppas and E. W. Merrill, J. Biomed. Mater. Res. 11 (1977) 423.

    PubMed  Google Scholar 

  15. S. A. Gaafar, F. H. Abdel-Kader and M. S. Rizk, Phys. Scr. 49 (1994) 366.

    Google Scholar 

  16. M. M. Perlman, J. Electrachem. Soc. 119 (1972) 892.

    Google Scholar 

  17. G. K. Narula, A. Tripathi and P. K. C. Pillai, J. Mater. Sci. 26 (1991) 4130.

    Google Scholar 

  18. D. A. Seanor, “Electrical Properties of Polymers”, (Academic Press, Inc. London Ltd., 1982).

    Google Scholar 

  19. A. C. Rastogi and K. L. Chopra, Thin Solid Films 27 (1975) 31.

    Google Scholar 

  20. A. K. Jonscher, ibid. 1 (1967) 1213.

    Google Scholar 

  21. K. C. Kao and W. Hwang, “Electrical Transport in Solids”, (Pergamon Press, Oxford, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, M.A., Abo-Ellil, M.S. Effect of dopant concentration on the electrical properties of polyvinyl alcohol (PVA). Journal of Materials Science: Materials in Electronics 9, 391–395 (1998). https://doi.org/10.1023/A:1008944411984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008944411984

Keywords

Navigation