Skip to main content
Log in

Molecular approaches towards development of novel Bacillus thuringiensis biopesticides

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) has been used for control of lepidopteran, dipteran and coleopteran insects for over three decades. Novel Bt strains harbouring new types of insecticidal genes are being discovered worldwide. Recombinant strains with enhanced toxicity and broadened insecticidal spectrum have been constructed. To increase the field persistence of insecticidal crystal proteins (ICPs), alternative modes of their delivery in Pseudomonas sp. and endophytes have been developed. ICPs have been modified by site-directed mutagenesis to improve their insecticidal efficacy. Higher yields of ICPs have been achieved by use of strong expression promoters and other regulatory elements. Gene-disabling of the sporulation-specific protease has led to yield enhancement of ICPs. Interestingly, Bt toxins have been found to act synergistically with some other pesticidal agents. Optimization of fermentation conditions is an essential requirement for cost-effective commercial production of Bt biopesticides. The environmental impact of deployment of genetically engineered biopesticides has been assessed. Recombinant Bt strains that do not carry any non-Bt DNA, endophytes, encapsulation in killed bacteria (such as Pseudomonas) and asporogenous Bt strains are ecologically safe approaches. Efficient resistance management strategies require judicious use of Bt transgenic plants in conjunction with refugia and Bt biopesticides in an Integrated Pest Management (IPM) program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, L.F., Brown, K.L. & Whiteley, H. 1991 Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal gene promoter. Journal of Bacteriology 173, 3846-3854.

    CAS  Google Scholar 

  • Adams, T.T., Eiteman, M.A. & Adang, M.J. 1999 Bacillus thuringiensis subsp. kurstaki spore population in batch culture using broiler litter extracts as complex media. Bioresource Technology 67, 83-87.

    CAS  Google Scholar 

  • Agaisse, H. & Lereclus, D. 1994 Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation specific sigma factor and is increased in a spo OA mutant. Journal of Bacteriology 176, 4734-4741.

    CAS  Google Scholar 

  • Arantes, O. & Lereclus, D. 1991 Construction of cloning vectors for Bacillus thuringiensis. Gene 108, 115-119.

    CAS  Google Scholar 

  • Ballester, V., Granoro, F., Tabashnik, B.E., Malvar, T. & Ferre, J. 1999 Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology 65, 1413-1419.

    CAS  Google Scholar 

  • Bar, E., Sandler, V., Makayoto, M. & Kenyan, A. 1998 Expression of chromosomally inserted Bacillus thuringiensis israelensis toxin genes in Bacillus sphaericus. Journal of Invertebrate Pathology 72, 206-213.

    CAS  Google Scholar 

  • Barboza-Corona, J.E., Lopez Meza, J.E. & Ibarra, J.E. 1998 Cloning and expression of the cry 1Ea4 gene of Bacillus thuringiensis at comparative toxicity of its gene product. World Journal of Microbiology and Biotechnology 14, 437-441.

    CAS  Google Scholar 

  • Baum, J.A., Kakefuda, M. & Gawron-Burke, C. 1996 Engineering Bacillus thuringiensis bioinsecticide with an indigenous site specific recombination system. Applied and Environmental Microbiology 62, 4367-4373.

    CAS  Google Scholar 

  • Beattie, S.H., Halt, C., Hirst, D. & Williams, A.G. 1998 Discrimination among Bacillus cereus, Bacillus mycoides and Bacillus thuringiensis and some other species of the genus Bacillus by Fourier transform infrared spectroscopy. FEMS Microbiology Letters 164, 201-206.

    CAS  Google Scholar 

  • Behle, R.W., McGuire, M.R. & Shasha, B.S. 1997 Effects of sunlight and simulated rain on residual activity of Bacillus thuringiensis formulations. Journal of Economic Entomology 90, 1560-1566.

    Google Scholar 

  • Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezino, N. & Margalith, Y. 1997 Extended screening by PCR for seven cry group genes from ®eld collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology 63, 2997-3002.

    Google Scholar 

  • Bernhard, K., Jarrett, P., Meadows, M., Butt, J., Ellis, D.J., Roberts, G.M., Pauli, S., Rodgers, P. & Burges, H.D. 1997 Natural isolates of Bacillus thuringiensis: Worldwide distribution, characterization and activity against insect pests. Journal of Invertebrate Pathology 70, 59-68.

    Google Scholar 

  • Bezdicek, D.F., Quinn, M.A., Forse, L., Heron, D. & Kahn, M.L. 1994 Insecticidal activity and competitiveness of Rhizobium spp. containing the Bacillus thuringiensis subsp. tenebrionis endotoxin gene (cry III) in legume nodules. Soil Biology and Biochemistry 26, 1637-1646.

    CAS  Google Scholar 

  • Bishop, A.H., Johnson, C. & Perani, M. 1999 The safety of Bacillus thuringiensis to mammals, investigated by oral and subcutaneous dosage. World Journal of Microbiology and Biotechnology 15, 375-380.

    Google Scholar 

  • Bone, E.J. & Ellar, D.J. 1989 Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiology Letters 58, 171-178.

    CAS  Google Scholar 

  • Bora, R.S., Murty, M.G., Shenbagarathi, R. & Sekar, V. 1994 Introduction of a lepidopteran-specific insecticidal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into Bacillus megaterium strain that persists in cotton phyllosphere. Applied and Environmental Microbiology 60, 214-222.

    CAS  Google Scholar 

  • Bourque, S.N., Valero, J.R., Mercier, J., Lavoie, M.C. & Levesque, R.C. 1993 Multiplex polymerase chain reaction for detection and di.erentiation of the microbial insecticide Bacillus thuringiensis. Applied and Environmental Microbiology 59, 523-527.

    CAS  Google Scholar 

  • Bowen, D., Rocheleau, T.A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R. & Ffrench-Constant, R.H. 1998 Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129-2132.

    CAS  Google Scholar 

  • Bravo, A. 1997 Phylogenetic relationship of Bacillus thuringiensis delta endotoxin family proteins and their functional domains. Journal of Bacteriology 179, 2793-2801.

    CAS  Google Scholar 

  • Bravo, A., Jansens, S. & Peferoen, M. 1992 Immunocytochemical characterization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. Journal of Invertebrate Pathology 60, 237-246.

    CAS  Google Scholar 

  • Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., Villalobos, F.J. & Pena, G. 1998 Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology 64, 4965-4972.

    CAS  Google Scholar 

  • Brousseau, C., Charpentier, G. & Belloncik, S. 1998 Effects of Bacillus thuringiensis and dextruxins (Metarhizium anisopliae Mycotoxins) combinations on Spruce Budworm (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology 72, 262-268.

    Google Scholar 

  • Burges, H.D.1998 Formulation of Microbial Biopesticides, Beneficial Microorganisms, Nematodes and Seed Treatments. pp. 412. Dordrecht: Kluwer Academic Publishers. ISBN 0-412-62520-2.

  • Burton, S.L., Ellar, D.J., Li, J. & Derbyshire, D.J. 1999 N-acetylga-lactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin like fold of a Bacillus thuringiensis insecticidal toxin. Journal of Molecular Biology 287, 1011-1022.

    CAS  Google Scholar 

  • Caprio, M.A. 1998 Evaluating resistance management strategies for multiple toxins in the presence of external refuges. Journal of Economic Entomology 91, 1021-1031.

    Google Scholar 

  • Carlson, C.R. & Kolsto, A.B. 1993 A complete physical map of a Bacillus thuringiensis chromosome. Journal of Bacteriology 175, 1053-1060.

    CAS  Google Scholar 

  • Carlton, B.C. 1996 Development and commercialisation of new and improved biopesticides. Annals of the New York Academy of Sciences 792, 154-163.

    Google Scholar 

  • Carlton, B.C. & Gawron-Burke, C. 1993 Genetic improvement of Bacillus thuringiensis for bioinsecticide development. In Advanced Engineered Biopesticides, ed. Kim, L., pp. 43-61. New York: Marcel Dekker Inc. ISBN 0-8247-8990-3.

    Google Scholar 

  • Carmona, A.A. & Ibarra, J.E. 1999 Expression and crystallization of Cry 3Aa-Cry-IAc chimerical protein of Bacillus thuringiensis. World Journal of Microbiology and Biotechnology 15, 455-463.

    CAS  Google Scholar 

  • Carozzi, N.B., Kramer, V.C., Warren, G.W., Evola, S. & Koziel, M.G. 1991 Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology 57, 3057-3061.

    CAS  Google Scholar 

  • Ceron, J., Ortiz, A., Quintero, R. & Bravo, A. 1995 Specific primers directed to identify cryI and cryIII genes in a Bacillus thuringiensis strain collection. Applied and Environmental Microbiology 61, 3826-3831.

    CAS  Google Scholar 

  • Chitra, S., Narayanan, R., Balakrishnan, A. & Jayaraman, K. 1998 A rapid and specific method for the identification of Bacillus thuringiensis strains by indirect immunofluorescence. Journal of Invertebrate Pathology 74, 263-267.

    Google Scholar 

  • Cody, V., Luft, J., Jensen, E., Pangborn, W. & English, L. 1992 Purification and crystallization of insecticidal delta endotoxin CryIII 2 from Bacillus thuringiensis proteins. Structural and Functional Genetics 14, 324-330.

    CAS  Google Scholar 

  • Crecchio, C. & Stotzky, G. 1998 Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biology and Biochemistry 30, 471-476.

    Google Scholar 

  • Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. & Dean, D.H. 1998 Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62, 807-813.

    CAS  Google Scholar 

  • Damgaard, P.H. 1995 Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis based insecticides. FEMS Immunology and Medical Microbiology 12, 245-250.

    CAS  Google Scholar 

  • Dichn, S.H., Chiu, E.L., De Rocher, E.J. & Green, P.J. 1998 Premature adenylation at multiple sites within a Bacillus thuringiensis toxin gene coding region. Plant Physiology 117, 1433-1443.

    Google Scholar 

  • Donovan, W.P., Rupar, M.J., Slaney, A.C., Malvar, T., Gawron Burke, M.C. & Johnson, T.B. 1992 Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to coleoptera species. Applied and Environmental Microbiology 58, 3921-3927.

    CAS  Google Scholar 

  • Donovan, W.P., Tan, Y. & Slaney, A.C. 1997 Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and e.ect of in vivo deletion of nprA on insecticidal crystal protein. Applied and Environmental Microbiology 63, 2311-2317.

    CAS  Google Scholar 

  • Drahos, D.J., Hemming, B.C. & McPherson, S. 1986 Tracking recombinant organisms in the environment: β-galactosidase as a selectable nonantibiotic marker for fluorescent pseudomonads. Bio/Technology 4, 1986-1990.

    Google Scholar 

  • Du, J., Knowles, B.H., Li, J. & Ellar, D.J. 1999 Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with phospholipid bilayer. Biochemical Journal 338, 185-193.

    CAS  Google Scholar 

  • Dubois, N.R. & Dean, D.H. 1995 Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacerial spores and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environmental Entomology 24, 1741-1747.

    Google Scholar 

  • Eskil, K. & Lovgren, A. 1997 Release of Bacillus thuringiensis subsp. israelensis in Swedish soil. FEMS Microbiology Ecology 23, 229-237.

    Google Scholar 

  • Feitelson, J.S., Payne, J. & Kim, L. 1992 Bacillus thuringiensis insects and beyond. Bio/Technology 10, 271-275.

    Google Scholar 

  • Ferrar, R.R. & Ridway, R.L. 1995 Enhancement of activity of Bacillus thuringiensis Berliner against four lepidopterous pests by nutrient based phagostimulants. Journal of Entomological Science 30, 29-42.

    Google Scholar 

  • Flexner, J.L. & Belnavis, D.L. 1999 Microbial insecticides. In Biological and Biotechnological Control of Insect Pests, eds. Rechcigl, J.E. & Rechcigl, N.A., pp. 35-62. Boca Raton: Lewis Publishers. ISBN 1-56670-479-0.

    Google Scholar 

  • Flores, H., Soberon, X., Sanchez, J. & Bravo, A. 1997 Isolated domain II and III from the Bacillus thuringiensis Cry1Ab delta endotoxin binds to lepidopteran midgut membranes. FEBS Letters 414, 313-318.

    CAS  Google Scholar 

  • van Frankenhuyzen, K., Gringorten, L. & Gauthier, D. 1997 Cry9Ca1 toxin, a Bacillus thuringiensis insecticidal crystal protein with high activity against the spruce budworm (Choristoneura fumiferana). Applied and Environmental Microbiology 63, 4132-4234.

    CAS  Google Scholar 

  • Gaertner, F.H., Quick, T.C. & Thompson, M.A. 1993 Cell cap: An encapsulation system for insecticidal biotoxin proteins. In Advanced Engineered Pesticides, ed. Kim, L., pp. 73-83. New York: Marcel Dekker Inc. ISBN 0-8247-8990-3.

    Google Scholar 

  • Gamel, P.H. & Piot, J.C. 1992 Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene 120, 17-26.

    CAS  Google Scholar 

  • Ge, B., Bidesh, D., Moas, W.J. & Federici, B.A. 1998 Differential e.ects of helper proteins encoded by the Cry2A and Cry11A operons on the formations of Cry2A inclusions in Bacillus thuringiensis. FEMS Microbiology Letters 165, 35-41.

    CAS  Google Scholar 

  • Gibson, D.M., Greenspan, L., Greenspan Gallo, L., Krano., S.B. & Ketchum, R.E.B. 1995 Increased efficacy of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. Journal of Economic Entomology 88, 270-277.

    CAS  Google Scholar 

  • Giddings, G., Mytton, L., Griffiths, M., McCarthy, A., Morgan, C. & Skot, L. 1997 A secondary e.ect of transformation in Rhizobium leguminosarum transgenic for Bacillus thuringiensis subsp. tenebrionis delta endotoxin (CryIIIA) genes. Theoretical and Applied Genetics 45, 1062-1068.

    Article  Google Scholar 

  • Gleave, A.P., Mitra, D.S., Markwick, N.P., Morris, B.A.M. & Bouning, L.L. 1998 Enhanced expression of the Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tubermoth. Molecular Breeding 4, 459-472.

    CAS  Google Scholar 

  • Gould, F. 1998 Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annual Review of Entomology 43, 701-726.

    CAS  Google Scholar 

  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carry, M., Schwartz, R. Brousseau, R. & Cygler, M. 1995 Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. Journal of Molecular Biology 254, 447-464.

    CAS  Google Scholar 

  • Gurtler, H. & Peterson, A.S. 1991 Mutants or variants of Bacillus thuringiensis producing high yields of delta endotoxin. PCT International Patent Application Number WO 91/07481.

  • Hansen, B.M., Damgaard, P.H., Eilenberg, J. & Pederson, J.C. 1998 Characterization of Bacillus thuringiensis isolated from leaves and insects. Journal of Invertebrate Pathology 71, 106-114.

    CAS  Google Scholar 

  • Honee, G., Convents, D., Van Rie, J., Jansens, S., Peferoen, M. & Visser, B. 1991 The carboxyl terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding. Molecular Microbiology 5, 2799-2806.

    CAS  Google Scholar 

  • Hwang, S.H., Saitoh, H., Mizuki, E., Higuch, K. & Ohba, M. 1998 A novel class of mosquitocidal delta endotoxin Cry19B encoded by a Bacillus thuringiensis serovar higo gene. Systematic and Applied Microbiology 21, 179-184.

    CAS  Google Scholar 

  • Itoua-Apoyolo, C., Drif, L., Vassal, J.M., De Barjac, H., Bossy, J.P., Leclant, F. & Frutos, R. 1996 Isolation of multiple species of Bacillus thuringiensis from a population of the European Sunflower moth, Homoeosoma nebulella. Applied and Environmental Microbiology 61, 4343-4347.

    Google Scholar 

  • Je, Y.H., Jin, B.R., Park, H.W., Roh, J.Y., Chang, J.H., Woo, S.D. & Kang, S.K. 1997 Expression of fusion protein with Autographa californica nuclear polyhedrosis virus polyhedrin and Bacillus thuringiensis Cry1Ac crystal protein in insect cells. Korean Journal of Applied Entomology 36, 3341-3350.

    Google Scholar 

  • Johnson, C., Bishop, A.H. & Turner, C.L. 1998a Isolation and activity of strains of Bacillus thuringiensis toxic to larvae of the housefly (Diptera: Muscidae) and tropical blowflies (Diptera: Calliphoridae). Journal of Invertebrate Pathology 71, 138-144.

    Google Scholar 

  • Johnson, D.E., Oppert, B. & McGaughey, W.H. 1998b Spore coat protein synergises Bacillus thuringiensis crystal toxicity for the Indian meal moth (Plodia interpunctella). Current Microbiology 36, 278-282.

    Google Scholar 

  • Juarez-Perez, V.M., Ferrandis, M.D. & Frutos, R. 1997 PCR based approach for detection of novel Bacillus thuringiensis cry genes. Applied and Environmental Microbiology 63, 2997-3002.

    CAS  Google Scholar 

  • Jung, Y.C., Kim, S.U., Bok, S.H., Park, H.Y., Cote, J.C. & Chung, Y.S. 1997 Characterization of Bacillus thuringiensis mutants and natural isolates by molecular methods. Canadian Journal of Microbiology 43, 403-410.

    Article  CAS  Google Scholar 

  • Jung, Y.C., Kim, S.U., Cote, J.C., Lecadet, M.M., Chung, Y.S. & Bok, S.H. 1998 Characterization of a new Bacillus thuringiensis subsp. Rigo strain isolated from rice bran in Korea. Journal of Invertebrate Pathology 71, 95-96.

    Google Scholar 

  • Kalman, S., Kiehne, K.L., Cooper, N., Reynoso, M.J. & Yamamoto, T. 1995 Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Applied and Environmental Microbiology 61, 3063-3068.

    CAS  Google Scholar 

  • Kasman, L.M., Lukowiak, A.A., Garczynski, S.F., McNall, R.J., Youngman, P. & Adang, M.J. 1998. Phage display of a biologically active Bacillus thuringiensis toxin. Applied and Environmental Microbiology 64, 2995-3003.

    CAS  Google Scholar 

  • Kaur, S. & Singh, A. 2000a Distribution of Bacillus thuringiensis isolates in di.erent soil types from North India. Indian Journal of Ecology 27, 52-60.

    Google Scholar 

  • Kaur, S. & Singh, A. 2000b Natural occurrence of Bacillus thuringiensis in leguminous phylloplanes in the New Delhi region of India. World Journal of Microbiology and Biotechnology 16 (in press).

  • Kendall, H.W., Beach, R., Eisner, T., Gould, F., Herdt, R., Raven, P.V., Schell, J.S. & Swaminathan, M.S. 1997 Bioengineering of crops. Report of the world bank panel on transgenic crops. In Environmentally and Socially Sustainable Development: Studies and monographs. Series 23, The International Bank for reconstruction and Development. The World Bank 1818 H Street, N.W. Washington DC. ISBN 0-82134073-5.

  • Kennedy, G.G. & Whalon, M.F. 1995 Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation. Journal of Economic Entomology 88, 456-460.

    Google Scholar 

  • Kim, H.S., Lee, D.W., Woo, S.D., Yu, Y.M. & Kang, S.K. 1998 Distribution, serological identification and PCR analysis of Bt isolated from soils of Korea. Current Microbiology 37, 195-200.

    CAS  Google Scholar 

  • Koziel, M.G., Carozzi, M.B., Currier, T.C., Warren, G.W. & Evola, S.V. 1993 The insecticidal crystal proteins of Bacillus thuringiensis: Past, present and future uses. Biotechnology and Genetic Engineering Reviews 11, 171-228.

    CAS  Google Scholar 

  • Kronstad, J.W. & Whiteley, H.R. 1986 Three classes of homologous Bacillus thuringiensis crystal protein genes. Gene 43, 29-40.

    CAS  Google Scholar 

  • Kumar, P.A., Mandaokar, A., Sreenivasu, K., Chakrabarti, S.K., Bisaria, S., Sharma, S.R., Kaur, S. & Sharma, R.P. 1998 Insect resistant transgenic brinjal plants. Molecular Breeding 4, 33-37.

    CAS  Google Scholar 

  • Kuo, W.S. & Chak, K.F. 1996 Identification of novel cry type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR amplified DNA. Applied and Environmental Microbiology 62, 1369-1377.

    CAS  Google Scholar 

  • Lampel, J.S., Canter, G.L., Dimock, M.B., Kelly, J.L., Anderson, J.J., Uratani, B.B., Foulke, J.S. & Turner, J.T. 1994 Integrative cloning, expression and stability of the cry1Ac gene from Bacillus thuringiensis sub sp. kurstaki in a recombinant strain of Clavibacter xyli sub sp. cynodontis. Applied and Environmental Microbiology 60, 501-508.

    CAS  Google Scholar 

  • Lecadet, M.M., Chaufaux, J., Ribier, J. & Lereclus, D. 1992 Construction of novel Bacillus thuringiensis strains with di.erent insecticidal specificities by transduction and by transformation. Applied and Environmental Microbiology 58, 840-849.

    CAS  Google Scholar 

  • Lee, M.K., Aguda, R.M., Cohen, M.B., Gould, F.L. & Dean, D.H. 1997 Determination of binding of Bacillus thuringiensis endotoxin receptors to rice stem borer midguts. Applied and Environmental Microbiology 63, 583-586.

    Google Scholar 

  • Lereclus, D., Agaisse, H., Gominet, M. & Chaufaux, J. 1995 Overproduction of encapsulated insecticidal crystal proteins in Bacillus thuringiensis spo mutant. Biotechnology 13, 67-71.

    CAS  Google Scholar 

  • Lereclus, D., Mahillon, J., Menou, G. & Lecadet, M.M. 1986 Identification of Tn 4430, a transposon of Bacillus thuringiensis functional in Escherichia coli. Molecular and General Genetics 204, 52-57.

    CAS  Google Scholar 

  • Li, J., Caroll, J. & Ellar, D.J. 1991 Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5Å resolution. Nature 353, 815-821.

    CAS  Google Scholar 

  • Li, J., Koni, P.A. & Ellar, D.J. 1996 Structure of the mosquitocidal δ-endotoxin cytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. Journal of Molecular Biology 257, 129-152.

    CAS  Google Scholar 

  • Li, R.S., Jarrett, P. & Burges, H.D. 1987 Importance of spores, crystals and δ-endotoxins in the pathogenicity of different varieties of Bacillus thuringiensis in Galleria mellonella and Pieris brassicae. Journal of Invertebrate Pathology 50, 277-284.

    CAS  Google Scholar 

  • Lovgren, A., Carlson, C.R., Eskils, K. & Kolsto, A.B. 1998 Localization of putative virulence genes on a physical map of the Bacillus thuringiensis subsp. gelechiae chromosome. Current Microbiology 37, 245-250.

    CAS  Google Scholar 

  • Lovgren, A., Zhang, M.Y., Engström, A., Dalhammer, G. & Landen, R. 1990 Molecular characterization of immune inhibitor. A secreted virulence protease from Bacillus thuringiensis. Molecular Microbiology 4, 2137-2146.

    CAS  Google Scholar 

  • de Maagd, R.A., Bakker, P.L., Masson, L., Adang, M.J., Sangadala, S., Steikema, W. & Bosch, D. 1999 Domain III of Bacillus thuringiensis delta endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and its purified amino peptidase N. Molecular Microbiology 31, 463-471.

    CAS  Google Scholar 

  • Mahaffee, W.F., Moar, W.J. & Kloepper, J.W. 1994 Bacterial endophytes genetically engineered to express the CryIIA δ-endotoxin from Bacillus thuringiensis subsp. Kurstaki. In Improving Plant Productivity with Rhizosphere Bacteria, eds. Ryder, M.H., Stevens, P.M. & Bowen, G.D., pp. 245-246. East Melbourne, Victoria: CSIRO Publications. ISBN 0-64305396-4.

    Google Scholar 

  • Malvar, T., Gawron-Burke, C. & Baum, J.A. 1994 Over-expression of Bacillus thuringiensis HknA, a histidine protein kinase homolog bypassing early Spo mutations that result in CryIIIA overproduction. Journal of Bacteriology 176, 4742-4749.

    CAS  Google Scholar 

  • Martens, J.W.M., Knoester, M. & Vlak, J.M. 1995 Characterization of baculovirus insecticides expressing tailored Bacillus thuringiensis Cry1Ab Crystal proteins. Journal of Invertebrate Pathology 66, 249-254.

    CAS  Google Scholar 

  • Masson, L., Erlandson, M., Puzstai-Carey, M., Brousseau, R., Juarez-Perez, V. & Frutos, R. 1998 A holistic approach for determining the entomopatho potential of Bacillus thuringiensis strains. Applied and Environmental Microbiology 64, 4782-4788.

    CAS  Google Scholar 

  • McClintock, J.T., VanBeek, N.A.M., Kough, J.L., Mendelsohn, M.L. & Hutton, P.O. 1999 Regulatory aspects of biological control agents and products derived by biotechnology. In Biological and Biotechnological Control of Insect Pests, eds. Rechcigl, J.E. & Rechcigl, N.A., pp. 305-357. Boca Raton: Lewis Publishers. ISBN 1-56670-479-0.

    Google Scholar 

  • McGaughey, N.H., Gould, F. & Gelernter, W. 1999 Bt resistance management. Nature Biotechnology 16, 144-146.

    Google Scholar 

  • Meadows, M.P., Ellis, D.J., Butt, J., Jarrett, P. & Burges, H.D. 1992 Distribution, frequency and diversity of Bacillus thuringiensis in an animal feed mill. Applied and Environmental Microbiology 58, 1344-1350.

    CAS  Google Scholar 

  • Mettus, A.M. & Macaluso, A. 1990 Expression of Bacillus thuringiensis delta endotoxin genes during vegetative growth. Applied and Environmental Microbiology 56, 1128-1134.

    CAS  Google Scholar 

  • Miller, R.V. 1998 Bacterial gene swapping in nature. Scientific American 278, 67-71.

    CAS  Google Scholar 

  • Morris, O.N., Kanagaratnam, P. & Converse, V. 1997 Suitability of 30 agricultural products and by products as nutrient sources for lab production of Bacillus thuringiensis subsp. aizawai (HD 133). Journal of Invertebrate Pathology 70, 113-120.

    Google Scholar 

  • Nambiar, P.T.C., Ma, S.W. & Iyer, V.N. 1990 Limiting an insect infestation of N2-fixing root nodules of the pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules. Applied and Environmental Microbiology 56, 2866-2869.

    CAS  Google Scholar 

  • Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Namakrishnan, N.A., Ghosh, M. & Sen, S.K. 1997 Transgenic elite indica plants expressing CryIAc delta toxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proceedings of the National Academy of Sciences of the USA 94, 2111-2116.

    CAS  Google Scholar 

  • Ortiz, M., Lina, M., Villabobos, F.J. & Pena, G. 1998 Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology 64, 4965-4972.

    Google Scholar 

  • Obukowicz, M.G., Perlak, F.J., Kusano-Kretzmer, K., Mayer, E.J. & Watrud, L.S. 1986 Integration of the delta endotoxin gene of Bacillus thuringiensis into the chromosome of root colonizing strains of pseudomonads using Tn5. Gene 45, 327-331.

    CAS  Google Scholar 

  • Park, H.W., Ge, B., Bauer, L.S. & Federici, B.A. 1998 Optimization of cry3A yields in Bacillus thuringiensis by use of sporulation dependent promoters in combination with the STAB-SDS mRNA sequence. Applied and Environmental Microbiology 64, 3932-3938.

    CAS  Google Scholar 

  • Perani, M., Bishop, A.H. & Vaid, A. 1998 Prevalence of δ-endotoxin, diarrhoeal toxin and specific delta endotoxin in natural isolate of Bacillus thuringiensis. FEMS Microbiology Letters 160, 55-60.

    CAS  Google Scholar 

  • Poncet, S., Bernhard, C., Dervyn, E., Cayley, J., Klier, A. & Rapoport, G. 1997a Improvement of Bacillus thuringiensis toxicity against dipteran larvae by integration via homologous recombination of the cryIIA toxin gene from Bacillus thuringiensis subsp. israelensis. Applied and Environmental Microbiology 63, 4413-4420.

    CAS  Google Scholar 

  • Poncet, S., Dervyn, E., Klier, A. & Rapoport, G. 1997b Spo OA represses transcription of the Cry toxin genes in Bacillus thuringiensis. Microbiology 143, 2743-2751.

    CAS  Google Scholar 

  • Pree, D.J. & Daly, J.C. 1996 Toxicity of mixtures of Bacillus thuringiensis with endosulfan and other insecticides to the cotton bollworm. Helicoverpa armigera, Pesticide Science 48, 199-204.

    CAS  Google Scholar 

  • Rajamohan, F., Alzate, O., Cotrill, J.A., Curtiss, A. & Dean, D.H. 1996 Protein engineering of Bacillus thuringiensis δ-endotoxin mutations at domain II of CryIAb enhance receptor affinity and toxicity towards gypsy moth larvae. Proceedings of the National Academy Sciences, of the USA 93, 14338-14343.

    CAS  Google Scholar 

  • Ramachandran, S., Buntin, G.D., All, J.N., Tabashnik, B.E., Reymer, P.L., Adang, M.J., Pulliam, D.A. & Steward, C.N. Jr. 1998 Survival, development and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola toxin. Journal of Economic Entomology 91, 1239-1244.

    Google Scholar 

  • Ramos, J.L., Andersson, P., Jensen, L.B., Ramos, C., Ronchel, M.C., Diaz, E., Timnis, K.N. & Molin, S. 1995 Suicide microbes on the loose. Biotechnology 13, 35-37.

    CAS  Google Scholar 

  • Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., Ginzberg, I., Konez-Kalman, Z., Koncz, C., Schell, J. & Zibberstein, A. 1996 Synergistic activity of a Bacillus thuringiensis endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Applied and Environmental Microbiology 62, 3581-3586.

    CAS  Google Scholar 

  • Rice, W.C. 1999 Specific primers for the detection of vip3A insecticidal gene in a Bacillus thuringiensis collection. Letters in Applied Microbiology 28, 378-382.

    CAS  Google Scholar 

  • van der Salm, T., Bosch, D., Honee, G., Feng, L., Munsteman, E., Bakker, P., Steikema, W.J. & Visser, B. 1994 Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry1A(b) and cryIC genes: A resistance management strategy. Plant Molecular Biology 26, 51-59.

    CAS  Google Scholar 

  • Sampson, M.N. & Gooday, G.W. 1998 Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144, 2189-2194.

    CAS  Google Scholar 

  • Sanchis, V., Agaisse, H., Chaufaux, J. & Lereclus, D. 1997 A recombinase mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Applied and Environmental Microbiology 63, 779-784.

    CAS  Google Scholar 

  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R. & Dean, D.H. 1998 Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62, 775-806.

    CAS  Google Scholar 

  • Shao, Z., Cui, Y., Liu, X., Yi, H., Ji, J. & Yu, Z. 1998 Processing of delta endotoxin of Bacillus thuringiensis subsp. kurstaki HD01 in Heliothis armigera midgut juice and the e.ect of protease inhibitors. Journal of Invertebrate Pathology 72, 73-81.

    CAS  Google Scholar 

  • Sharma, R.P., Kumar, P.A. & Kaur, S. 1997 Genetic engineering of crop plants for insect resistance using crystal protein genes of Bacillus thuringiensis. In Plant Molecular Biology and Biotechnology, eds. Tiwari, K.K. & Singhal, G.S., pp. 43-52. New Delhi: Narosa Publishers. ISBN 81-7319-125-5.

    Google Scholar 

  • Shevelev, A.B., Lewitin, E., Novikava, S.I., Wojciechowska, Ya-A., Usacheva, E.A., Chestukhina, G.G. & Stepanov, V.M. 1998 A new PCR based approach to a fresh search of a wide spectrum of cry genes from Bacillus thuringiensis strains. Biochemistry and Molecular Biology International 45, 1265-1271.

    CAS  Google Scholar 

  • Smedley, D.P. & Ellar, D.J. 1996 Mutagenesis of three surface exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology 142, 1617-1624.

    CAS  Google Scholar 

  • Smith, R.A. & Barry, J.W. 1998 Environmental persistence of Bacillus thuringiensis spores following aerial application. Journal of Invertebrate Pathology 71, 263-267.

    CAS  Google Scholar 

  • Stock, C.A., McLoughlin, T.J., Klein, J.A. & Adang, M.J. 1990 Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Canadian Journal of Microbiology 36, 879-884.

    Article  CAS  Google Scholar 

  • Tapp, H. & Stotzky, G. 1998 Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biology and Biochemistry 30, 471-476.

    CAS  Google Scholar 

  • Tan, W.J., Liang, G.M. & Guo, Y.Y. 1998 Mechanism of resistance alleviation in Helicoverpa armigera (Lepidoptera: Noctuidae) to pyretheoid caused by Bacillus thuringiensis pretreatment. Journal of Economic Entomology 91, 1253-1259.

    CAS  Google Scholar 

  • Theunis, W., Aguda, R.M., Cruz, W.T., Decock, C., Peferoen, M., Lambert, B., Bottrell, D.G., Gould, T., Lalsinger, J.A. & Cohen, M.B. 1998 Bacillus thuringiensis isolates from the Phillipines. Habitat distribution, δ-endotoxin diversity and toxicity to rice stem borers (Lepidoptera: Pyralidae). Bulletin of Entomology Research 88, 335-342.

    Article  CAS  Google Scholar 

  • Thompson, M.A., Schnepf, H.E. & Feitelson, J.S. 1995 Structure, function and engineering of Bacillus thuringiensis toxins. In Genetic Engineering: Principles and Methods, vol. 17, ed. Setlow, J.K., pp. 99-117. New York: Plenum Press. ISBN 0-30645071-2.

    Google Scholar 

  • Thompson, M. & Schwab, G.E. 1995 World Intellectual Property Organization. Patent W095/30752.

  • Tomasino, S.F., Leister, R.T., Dimock, M.B., Beach, R.M. & Kelly J.L. 1995 Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal crystal protein genes cry1Ac of Bacillus thuringiensis against European corn borer in field corn. Biological Controls 5, 442-448.

    Google Scholar 

  • Udayasuriyan, V., Nakamura, A., Masaki, H. & Uozumi, T. 1995 Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant colonizing Azospirillum. World Journal of Microbiology and Biotechnology 11, 163-167.

    CAS  Google Scholar 

  • Uemura, T., Ihara, H., Wadana, A. & Himeno, M. 1992 Fluorimetric of assay potential change of Bombyx mori midgut brush border membrane induced by δ-endotoxin from Bacillus thuringiensis. Biosciences Biotechnology and Biochemistry 56, 1976-1979.

    Article  CAS  Google Scholar 

  • Vilas Boas, G.F.L.T., Vilas Boas, L.A., Lereclus, D. & Arantes, O.M.N. 1998 Bacillus thuringiensis conjugation under environmental conditions. FEMS Microbiology Ecology 25, 369-374.

    Article  CAS  Google Scholar 

  • Vora, D. & Sethna, Y.I. 1999 Enhanced growth, sporulation and toxin poduction by Bacillus thuringiensis subsp. kurstaki in oil seed meal extract media containing cystine. World Journal of Microbiology and Biotechnology 15, 747-749.

    CAS  Google Scholar 

  • Waalwijk, C., Dullemans, A. & Maat, C. 1991 Construction of a bioinsecticidal rhizosphere isolate of Pseudomonas fluorescens. FEMS Microbiology Letters 77, 257-264.

    CAS  Google Scholar 

  • Wakisaka, Y., Masaki, E., Koizumi, K., Nishimoto, U., Endo, Y., Nishimura, M.S. & Nishitsutsuji-Owo, J. 1982 Asporogenous Bacillus thuringiensis mutants producing high yields of delta endotoxin. Applied and Environmental Microbiology 43, 1473-1480.

    CAS  Google Scholar 

  • Wasano, N. & Ohba, M. 1999 Assignment of delta endotoxin genes of the four lepidoptera specific Bacillus thuringiensis strains that produce spherical parasporal inclusions. Current Microbiology 37, 408-411.

    Google Scholar 

  • Wilcks, A., Jayaswal, N., Lereclus, D. & Andrup, L. 1998 Characterization of plasmid pAW63, a second self transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD 73. Microbiology 144, 1263-1270.

    Article  CAS  Google Scholar 

  • Wiwat, C. & Panbangred, W. 1995 Transfer of plasmids and chromosomal genes among subspecies of Bacillus thuringiensis. Journal of Industrial Microbiology 6, 19-27.

    Google Scholar 

  • Wu, S.J. & Dean, D.H. 1996 Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA δ-endotoxin. Journal of Molecular Biology 255, 628-640.

    CAS  Google Scholar 

  • Yamamoto, T. & Powell, G.K. 1993 Bacillus thuringiensis crystal proteins: Recent advances in understanding its insecticidal activity. In Advanced Engineered Pesticides, ed. Kim, L., pp. 3-42. New York: Marcel Dekker Inc. ISBN 0-8247-8990-3.

    Google Scholar 

  • Yang, X.M. & Wang, S. 1998 Development of Bacillus thuringiensis fermentation and process control from a practical perspective. Biotechnology and Applied Biochemistry 28, 95-98.

    CAS  Google Scholar 

  • Yu, C.G., Mullins, M.A., Warren, G.W., Koziel, M.G. & Estruch, J.J. 1997 The Bacillus thuringiensis vegetative insecticidal protein vip3A lyses midgut epithelial cells of susceptible insects. Applied and Environmental Microbiology 63, 532-536.

    CAS  Google Scholar 

  • Zouari, A., Dhouib, A., Ellouz, R. & Jaoua, S. 1998 Nutritional requirements of a strain of Bacillus thuringiensis subsp. kurstaki and use of gruel hydrolysate for the formulation of a new medium for delta endotoxin production. Applied Biochemistry and Biotechnology 69, 41-52.

    CAS  Google Scholar 

  • Zouari, N. & Jaoua, S. 1997 Purification and immunological characterization of particular delta endotoxins from three strains of Bacillus thuringiensis. Biotechnology Letters 19, 825-829.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S. Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World Journal of Microbiology and Biotechnology 16, 781–793 (2000). https://doi.org/10.1023/A:1008931207374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008931207374

Navigation