Skip to main content
Log in

Effect of fluoride on apatite formation from Ca4(PO4)2O in 0.1 mol L−1 KH2PO4

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effect of fluoride on the hydrolysis of tetracalcium phosphate (TTCP; Ca4(PO4)2O) was investigated in 0.1 mol l−1KH2PO4 containing 0–83 mol l−1 KF. Characterization of the final apatite phase formed by the hydrolysis was made with X-ray diffraction and SEM. The initial pH was between 4.5 and 5.4, depending on the solutions, and the pH rapidly increased and was kept constant between 7.3 and 6.5. An increase in KF concentration tended to lower the pH in the final stage of hydrolysis. The calcium concentration was considerably lower than the phosphorus concentration throughout the reaction. The fluoride concentration decreased shortly after the start of hydrolysis. The hydrolysis of TTCP in 0.1 mol l−1 KH2PO4 proceeded to form hydroxyapatite via DCPD when the KF concentration was low. The hydrolysis product was a calcium-deficient non-stoichiometric hydroxyapatite with a Ca/P ratio of about 1.5. With an increase in the KF concentration in the 0.1 mol l−1 KH2PO4 solution, TTCP directly transformed into hydroxyapatite containing F- ions or fluorapatite and with improved crystallinity. The addition of fluoride in the solution initially accelerated the formation of apatite. However, the layer of newly formed apatite adhering to the TTCP particles retarded TTCP dissolution; as a result, hydrolysis was delayed. IR analysis showed that the apatite phase contained HPO2−4 ions in the structure. The formula for the hydrolysis product of TTCP in the presence of fluoride can be expressed as follows: Ca10−x(HPO4)x(PO4)10−x(OH)2−x−yFy. © 1998 Chapman & Hall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Brown and L. C. Chow, in “Cements Research Progress 1986”, edited by P. W. Brown (American Ceramic Society, Westerville, OH, 1987) pp. 351–79.

    Google Scholar 

  2. L. C. Chow, S. Takagi, P. D. Constantino and C. D. Friedman, Mater Res. Symp. Proc. 179 (1991) 3.

    Google Scholar 

  3. L. C. Chow, J. Ceram. Soc. Jpn 99 (1991) 954.

    Google Scholar 

  4. Y. Doi, S. Shibata, Y. Takezawa, N. Wakamatsu, N. Kamemizu, M. Iijima, Y. Moriwaki, K. Uno, F. Kubo and Y. Haeuchi, J. Jpn Soc. Dent. Mater. Dev. 7 (1988) 176.

    Google Scholar 

  5. Y. Fukase, E. D. Eanes, S. Takagi, L. C. Chow and W. E. Brown, J. Dent. Res. 69 (1990) 1852.

    Google Scholar 

  6. P. W. Brown and M. Fulmer, J. Am. Ceram. Soc. 74 (1991) 934.

    Google Scholar 

  7. P. W. Brown, N. Hocker and S. Hayle, ibid. 74 (1991) 1848.

    Google Scholar 

  8. M. Fulmer and P. W. Brown, J. Biomed. Mater. Res. 27 (1993) 1095.

    Google Scholar 

  9. P. W. Brown and M. Fulmer, ibid. 31 (1996) 395.

    Google Scholar 

  10. K. S. Tenhuisen and P. W. Brown, J. Mater. Sci. Mater. Med. 7 (1996) 309.

    Google Scholar 

  11. S. Matsuya, S. Takagi and L. C. Chow, J. Dent. Res. 70 (Special issue) (1991) 308.

    Google Scholar 

  12. H. Monma, M. Goto, H. Nakajima and H. Hashimoto, Gypsum Lime 202 (1986) 17.

    Google Scholar 

  13. L. Xie and E. A. Monroe, Mater. Res. Symp. Proc. 179 (1991) 25.

    Google Scholar 

  14. K. Ishikawa and E. D. Eanes, J. Dent. Res. 72 (1993) 474.

    Google Scholar 

  15. S. Matsuya, S. Takagi and L. C. Chow, J. Mater. Sci. 31 (1996) 3263.

    Google Scholar 

  16. H. Monma and S. Ueno, Gypsum Lime 172 (1981) 11.

    Google Scholar 

  17. M. S. Tung, L. C. Chow and W. E. Brown, J. Dent. Res. 64 (1985) 2.

    Google Scholar 

  18. M. S. Tung, B. Tomazic and W. E. Brown, Archs. Oral Biol. 37 (1992) 585.

    Google Scholar 

  19. M. Fulmer and P. W. Brown, J. Am. Ceram. Soc. 75 (1992) 3401.

    Google Scholar 

  20. E. J. Duff, J. Chem. Soc. (A) (1971) 33.

    Google Scholar 

  21. J. Lin, S. Raghavan and D. W. Ferstenau, Colloids Surface 3 (1981) 357.

    Google Scholar 

  22. R. Z. Legeros, in “Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Science”, Vol. 15, edited by H.M. Meyers, (Kargel, Basel, 1991) pp. 30.

    Google Scholar 

  23. R. Z. Legeros and S. Suga, Calcif. Tissue. Int. 32 (1980) 169.

    Google Scholar 

  24. B. Menzel and C. H. Amberg, J. Coll. Interface Sci. 38 (1972) 256.

    Google Scholar 

  25. R. A. Young and D. W. Holcomb, Calcif Tissue Int. 36 (1984) 60.

    Google Scholar 

  26. J. Arends, J. Christoffersen, M. R. Christoffersen, H. Eckert, B. O. Fowler, J. C. Heughebaert, G. H. Nancollas, J. P. Yesinowski and S. J. Zawacki, J. Crystal Growth 84 (1987) 515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuya, S., Matsuya, Y., Takagi, S. et al. Effect of fluoride on apatite formation from Ca4(PO4)2O in 0.1 mol L−1 KH2PO4. Journal of Materials Science: Materials in Medicine 9, 325–331 (1998). https://doi.org/10.1023/A:1008850829768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008850829768

Keywords

Navigation