Skip to main content
Log in

Surface Energy of Silica-TEOS-PDMS Ormosils

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Inverse gas chromatography (IGC) was applied to characterize the surface energy of organically modified silicates (ormosils) by measuring the interaction of molecular organic probes with the ormosil surface. Ormosils were prepared by the sol-gel method by the reaction of TEOS (tetraethoxysilane), PDMS (polydimethylsiloxane) and different types of silica (Aerosil 130, Aerosil 200 and Aerosil 380). The isosteric heat of adsorption, q st, and the dispersive component of the surface energy, γs D, were estimated by using the retention volume of different nonpolar and polar probes at infinite dilution. The dispersive component shows an increase as the specific surface area of the silica is increased from 29.6 mJ/m2 to 51.4 mJ/m2 at 60°C. Such values are lower than that obtained for aerosil particles meaning that PDMS chains impede the interaction with silanol groups located on the silica surface. The specific interaction parameter, ISP, and the enthalpy of specific adsorption, ΔH a SP, of polar probes on the ormosil surface were also measured in order to obtain the acid-base character of ormosil surface. The ΔH a SP, was correlated with the donor, DN, and the acceptor, AN, numbers of the probes to quantify the acidic, K A, and the basic, K B, parameters of the substrate surface. The obtained results suggest that the silica particles were covered by PDMS chains in a different way depending on the type of silica used. The values of K A and K B suggest that the ormosil surface is amphoteric, with predominantly acceptor electron sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Philipp and H. Schmidt, J. Non-Cryst. Solids 63, 283 (1984).

    Google Scholar 

  2. G.L. Wilkes, B. Orler, and H. Huang, Polym. Prepr. 26, 300 (1985).

    Google Scholar 

  3. H. Huang, B. Orler, and G.L. Wilkes, Macromolecules 20, 1322 (1987).

    Google Scholar 

  4. J.D. Mackenzie and Y. Hu, J. Mater. Sci. 27, 4415 (1992).

    Google Scholar 

  5. J.D. Mackenzie, Y.J. Chung, and Y. Hu, J. Non-Cryst. Solids 147/148, 271 (1992).

    Google Scholar 

  6. K. Morita, Y. Hu, and J.D. Mackenzie, J. Sol-Gel Sci. and Tech. 3, 109 (1994).

    Google Scholar 

  7. T. Iwamoto and J.D. Mackenzie, J. Sol-Gel Sci. and Tech. 4, 141 (1995).

    Google Scholar 

  8. S.J. Kramer and J.D. Mackenzie, Mat. Res. Soc. Sym. Proc. 346, 709 (1994).

    Google Scholar 

  9. J.D. Mackenzie, Q. Huang, and T. Iwamoto, J. Sol-Gel Sci. and Tech. 7, 151 (1996).

    Google Scholar 

  10. L. Guo, J. Hyeon-Lee, and G. Beaucage, J. Non-Cryst. Solids 243, 61 (1999).

    Google Scholar 

  11. T. Iwamoto, K. Morita, and J.D. Mackenzie, J. Non-Cryst. Solids 159, 65 (1993).

    Google Scholar 

  12. Y. Hoshino and J.D. Mackenzie, J. Sol-Gel Sci. and Tech. 5, 83 (1995).

    Google Scholar 

  13. C. Martos, F. Rubio, J. Rubio, and J.L. Oteo, Submitted for Publication.

  14. F. Rubio, J. Rubio, and J.L. Oteo, J. Sol-Gel Sci. and Tech. 18, 105 (2000).

    Google Scholar 

  15. J.R. Conder and C.L. Young, Physicochemical Measurement by Gas Chromatography (Wiley-Interscience, New York, 1979).

    Google Scholar 

  16. G.M. Dorris and D.G. Gray, J. Coll. Interf. Sci. 77, 353 (1980).

    Google Scholar 

  17. S. Katz and D.G. Gray, J. Coll. Interf. Sci. 82, 318 (1981).

    Google Scholar 

  18. C. Saint Flour and E. Papirer, Ind. Eng. Chem. Prod. Res. Dev. 21, 666 (1982).

    Google Scholar 

  19. J. Schultz, L. Lavielle, and C. Martin, J. Adhesion 23, 45 (1987).

  20. J. Jagiello, T.J. Bandosz, and J.A. Schwarz, J. Coll. Interf. Sci. 151, 433 (1992).

    Google Scholar 

  21. D.P. Kamdem, S.K. Bose, and P. Luner, Langmuir 9, 3039 (1993).

    Google Scholar 

  22. H. Balard, A. Saada, B. Siffert, and E. Papirer, Clays Clay. Miner. 45, 489 (1997).

    Google Scholar 

  23. M.C. Bautista, J. Rubio, and J.L. Oteo, J. Mater. Sci. 30, 1595 (1995).

    Google Scholar 

  24. E. Papirer, J.M. Perrin, B. Siffert, G. Philipponneau, and J.M. Lamerant, J. Coll. Interf. Sci. 156, 104 (1993).

    Google Scholar 

  25. A. Vidal, E. Papirer, W.M. Jiao, and J.B. Donnet, Chromatographia 23, 121 (1987).

    Google Scholar 

  26. G. Ligner, A. Vidal, H. Balard, and E. Papirer, J. Coll. Interf. Sci. 133, 200 (1989).

    Google Scholar 

  27. E. Papirer, H. Balard, Y. Rahmani, A.P. Legrand, L. Facchini, and H. Hommel, Chromatographia 23, 639 (1987).

    Google Scholar 

  28. F. Rubio, J. Rubio, and J.L. Oteo, J. Sol-Gel Sci. and Tech. 10, 31 (1997).

    Google Scholar 

  29. S. Dong, M. Brendlé, and J.B. Donnet, Chromatographia 28, 469 (1989).

    Google Scholar 

  30. J.B. Donnet, S.J. Park, and H. Balard, Chromatographia 31, 434 (1991).

    Google Scholar 

  31. E. Brendlé and E. Papirer, J. Coll. Interf. Sci. 194, 207 (1997).

    Google Scholar 

  32. E. Brendlé and E. Papirer, J. Coll. Interf. Sci. 194, 217 (1997).

    Google Scholar 

  33. M.C. Gutierrez, J. Rubio, F. Rubio, and J.L. Oteo, J. Chromatography A 845, 53 (1999).

    Google Scholar 

  34. V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).

    Google Scholar 

  35. J. Kuczynski and E. Papirer, Eur. Polym. J. 27, 653 (1991).

    Google Scholar 

  36. L. Lavielle and J. Schultz, Langmuir 7, 978 (1991).

    Google Scholar 

  37. M.I. Nieto, J.C. Diez-Masa, J.L. Oteo, and M.V. Dabrio, Chromatographia 12, 111 (1979).

    Google Scholar 

  38. F.M. Nelsen and F.T. Eggertsen, Anal. Chem. 30, 1387 (1958).

    Google Scholar 

  39. D.P. Kamdem and B. Riedl, J. Coll. Interf. Sci. 150, 507 (1992).

    Google Scholar 

  40. Degussa Corporation, Aerosil-Fumed Silica Technical Brochure.

  41. M.J. Velasco, Sintesis y Caracterizacion de Ormosiles Obtenidos a partir deTEOS y PDMS. Ph. D. Thesis, Universidad Autonoma de Madrid, 1999..

  42. D.R. Lide, Handbook of Chemistry and Physics, 72nd Ed. (CRC Press, Inc., Boca Raton I L, 1991).

    Google Scholar 

  43. S.J. Park and M. Brendlé, J. Coll. Interf. Sci. 188, 336 (1997).

    Google Scholar 

  44. C. Contescu, J. Jagiello, and J.A. Schwarz, J. Catalysis 131, 433 (1991).

    Google Scholar 

  45. Q.S. Bathia, J. Chen, J.T. Koberstein, J.E. Sohn, and J.A. Emerson, J. Coll. Interf. Sci. 106, 353 (1985).

    Google Scholar 

  46. P. Mukhopadhyay and H.P. Schreiber, J. Polym. Sci., B. Polym. Phys. 32, 1653 (1994).

    Google Scholar 

  47. V.I. Bogillo, V.P. Shkilev, and A. Voelkel, J. Mater. Chem. 8, 1953 (1998).

    Google Scholar 

  48. E. Papirer, H. Balard, and M. Sidqi, J. Coll. Interf. Sci. 159, 238 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martos, C., Rubio, F., Rubio, J. et al. Surface Energy of Silica-TEOS-PDMS Ormosils. Journal of Sol-Gel Science and Technology 20, 197–210 (2001). https://doi.org/10.1023/A:1008759708396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008759708396

Navigation