Skip to main content
Log in

The Tetrahedral 4‐Body Problem with Rotation

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider four bodies in space with same masses forming two binaries, each one symmetric with respect to a fixed axis and moving under Newtonian gravitation in opposite directions about this axis. It is given a direct proof that all singularities of this model are due to collisions, and it is proved that the singularities due to simultaneous double collisions are regularizable.

The set of equilibrium points on the total collision manifold is studied as well as the possible connections among them. We show that the set of initial conditions on a given energy surface going to quadruple collision is a union of twenty submanifolds: twelve of them have dimension 2 and the others have dimension 3. Similarly for ejection orbits from quadruple collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabral, H. E.: 1973, ‘On the integral manifolds of the N-body problem’, Invent. Math. 20, 59–72.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Devaney, R. L.: 1981, ‘Singularities in classical mechanical systems’, in: A. Katok (ed.), Ergodic Theory and Dynamical Systems I, Proc. Special Year, Maryland, 1979-80, Birkhauser, pp. 211–333.

  3. Easton, R. and McGehee, R.: 1979, ‘Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere’, Indiana Univ. Math. J. 28, 211–240.

    Article  MATH  MathSciNet  Google Scholar 

  4. Llibre, J. and Simó, C.: 1980, ‘Some homoclinic phenomena in the three-body problem’, J. Diff Equations 33, 444–465.

    Article  Google Scholar 

  5. Llibre, J. and Simó, C.: 1980, ‘Oscillatory solution in the planar restricted three-body problem’, Math. Annalen 248, 153–184.

    Article  MATH  Google Scholar 

  6. McGehee, R.: 1974, ‘Triple collision in the collinear three-body problem’, Invent. Math. 27, 191–227.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. McGehee, R.: 1973, ‘A stable manifold theorem for degenerate fixed points with applications to celestial mechanics’, J. Diff. Equations 14, 70–88.

    Article  MATH  MathSciNet  Google Scholar 

  8. Moeckel, R.: 1984 ‘Heteroclinic phenomena in the isosceles three-body problem’, Siam J. Math. Anal. 15, 857–876.

    Article  MATH  MathSciNet  Google Scholar 

  9. Moser, J.: 1973, Stable and Random Motions in Dynamical Systems, Princeton.

  10. Painlevé, P.: 1897, Leçons sur la thérie analytique des equations différentielles, A. Hermann, Paris.

    Google Scholar 

  11. Saari, D.: 1973, ‘On oscillatory motion in gravitational systems’, J. Diff Equations 14, 275–292.

    Article  MATH  MathSciNet  Google Scholar 

  12. Saari, D. and Xia, Z.: 1989, 'The existence of oscillatory and super-hyperbolic motions in Newtonian systems, J. Diff Equations 82, 342–355.

    Article  MATH  MathSciNet  Google Scholar 

  13. Siegel, C. and Moser, J.: 1971, Lectures on Celestial Mechanics, Springer-Verlag, New York, Heildelberg, Berlin.

    Google Scholar 

  14. Simó, C. and Lacomba, E.: 1982, ‘Analysis of some degenerate quadruple collisions’, Celest. Mech. 28, 49–62.

    Article  MATH  ADS  Google Scholar 

  15. Sitnikov, K.: 1964, ‘The existence of oscillatory motion in the three-body problem’, Soviet Physics Doklady 5, 647–656.

    MathSciNet  Google Scholar 

  16. Smale, S.: 1970, ‘Topology and mechanics I’, Invent. Math. 10, 305–331.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Sundman, K.: 1909, ‘Nouvelles recherches sur le problème des trois corps’, Acta Soc. Sci. Fenn. 35(9).

  18. Vidal, C.: 1996, ‘O problema tetraedral simétrico com rotaç ão’, Thesis for Degree of Doctor in Mathematics, Universidade Federal de Pernambuco, Brazil.

    Google Scholar 

  19. Vidal, C. and Delgado, J.: ‘The tetrahedral four-body problem’, Preprint.

  20. Wintner, A.: 1941, The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, N. J.

    Google Scholar 

  21. Xia, Z. 1992, ‘The existence of non-collision singularities in Newtonian systems’, Annal. Math. 135, 411–468.

    Article  MATH  Google Scholar 

  22. Xia, Z.: ‘A heteroclinic map and the oscillatory, capture, escape motions in the three-body problem’, Hamiltonian Systems and Celestial Mechanics (Guanajuato, 1991), pp. 191–208, Adv. Ser. Nonlinear Dynamics 4, World Sci. Publishing, River Edge, NJ, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, C. The Tetrahedral 4‐Body Problem with Rotation. Celestial Mechanics and Dynamical Astronomy 71, 15–33 (1998). https://doi.org/10.1023/A:1008397202674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008397202674

Navigation