Skip to main content
Log in

Bruns' Theorem: The Proof and Some Generalizations

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We give here a proof of Bruns’ Theorem which is both complete and as general as possible:

Generalized Bruns’ Theorem.In the Newtonian (n+1)-body problem inp with n≥2 and 1≤pn+1, every first integral which is algebraic with respect to positions, linear momenta and time, is an algebraic function of the classical first integrals: the energy, the p(p−1)/2 components of angular momentum and the 2p integrals that come from the uniform linear motion of the center of mass.

Bruns’ Theorem only dealt with the Newtonian three-body problem in ℝ3; we have generalized the proof to n+1 bodies in ℝp with pn+1. The whole proof is much more rigorous than the previous versions (Bruns, Painlevé, Forsyth, Whittaker and Hagiara). Poincaré had picked out a mistake in the proof; we have understood and developed Poincaré’s instructions in order to correct this point (see Subsection 3.1). We have added a new paragraph on time dependence which fills in an up to now unnoticed mistake (see Section 6). We also wrote a complete proof of a relation which was wrongly considered as obvious (see Section 3.3). Lastly, the generalization, obvious in some parts, sometimes needed significant modifications, especially for the case p=1 (see Section 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy, A. and Chenciner, A.: 1998, 'Le problème des n corps et les distances mutuelles', Invent. math. 131, 151-184.

    Article  MATH  MathSciNet  Google Scholar 

  2. Albouy, A.: 1996, 'A propos du vecteur de Laplace', preprint du Bureau des longitudes.

  3. Bruns, H.: 1887, Acta Math. 11.

  4. Forsyth, A. R.: 1900, 'Theory of Differential Equations', Vol. 3 chap. 17.

  5. Hagihara, Y.: 1968, Celestial Mechanics, 1.

  6. Julliard Tosel, E.: 1999, 'Non-intégrabilité algébrique et méromorphe de problèmes de N corps', Thèse de l'Université Paris VII.

  7. Julliard Tosel, E.: 'Meromorphic parametric non-integrability; the inverse square potential', Archive in Rational Mechanics and Analysis 152 (2000), 187-205.

    Article  MathSciNet  Google Scholar 

  8. Julliard Tosel, E.: 'Un nouveau critère de non-intégrabilité méromorphe d'un Hamiltonien', C. R. Acad. Sci. Paris t. 330, Série I, p. 1097-1102, 2000.

  9. MacMillan, W. D.: 1913, 'On Poincaré correction to Bruns' Theorem', A.M.S..

  10. Painlevé, P.: 1898, 'Mémoire sur les intégrales premières du problème des n corps', Acta Math. Bull. Astr. T 15.

  11. Poincaré, H.: 1896, C. R. Acad. Sci. Paris 123, 1224.

    Google Scholar 

  12. Siegel, C. L.: 1936, 'Uber die algebraischen Integrale des restringierten Dreikrperproblems', Trans. Am. Math. Soc. 39, 225.

    Article  MATH  Google Scholar 

  13. Whittaker, E. T.: 1904, 'A treatise on the analytical dynamics of particles and rigid bodies'.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julliard-Tosel, E. Bruns' Theorem: The Proof and Some Generalizations. Celestial Mechanics and Dynamical Astronomy 76, 241–281 (2000). https://doi.org/10.1023/A:1008346516349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008346516349

Navigation