Skip to main content
Log in

Phosphate metabolism during diel vertical migration in the raphidophycean alga, Chattonella antiqua

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The ecological advantage of diel vertical migration on the nutrition and accumulation of Chattonella antiqua, which is one of the dominant red-tide forming phytoplankton species in the Seto Inland Sea of Japan, was examined using a large axenic culture tank, in which vertical stratification of salinity, temperature and nutrients was maintained, analogous to natural conditions observed when red tides occur. C. antiqua was capable of migrating through very sharp salinity and temperature gradients. At night the species migrated to the deep nutrient-rich water and assimilated nutrients. During the daytime it migrated to the nutrient-depleted surface water and used the accumulated nutrients for photosynthesis. Nitrogen uptake was synchronized with phosphate uptake. 31P-NMR spectroscopy during the migration experiment revealed that C. antiqua has the capability of nocturnal phosphate uptake in the deep nutrient-rich water, but no capability of synthesizing polyphosphate, which was considered to be the intracellular phosphate pool. These findings were compared with those reported for another raphidophycean, Heterosigma akashiwo. Although both species carry out vertical migration and nocturnal nutrient uptake, only H. akashiwo has the capability of making an intracellular polyphosphate pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrow KD, Gollins JG, Norton RS, Rogers PL, Smith GM (1984) 31P nuclear magnetic resonance studies of the fermentation of glucose to ethanol by Zymomonas mobilis. J. biol. Chem. 259: 5711–5716.

    PubMed  CAS  Google Scholar 

  • Bental M, Oren-Shamir M, Avron M, Degani H (1988) 31P and 13CNMR studies of the phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina. Plant Physiol. 87: 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Bental M, Pick U, Avron M, Degani H (1991) Polyphosphate metabolism in the alga Dunaliella salina studied by 31P-NMR. Biochim. Biophys. Acta 1092: 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Bock C, Jacob A, Kirst GO, Leibfritz D, Mayer A (1996) Metabolic changes of the Antarctic green alga Prasiola crispa subjected to water stress investigated by in vivo 31P NMR. J. exp. Bot. 47: 241–249.

    Article  CAS  Google Scholar 

  • Cullen JJ, Horrigan SG (1981) Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate Gymnodinium splendens. Mar. Biol. 62: 81–89.

    Article  CAS  Google Scholar 

  • Elgavish A, Elgavish GA, Halmann M, Berman T (1980) Phosphorus utilization and storage in batch cultures of the dinoflagellate Peridinium cinctum F. westii. J. Phycol. 16: 626–633.

    Article  CAS  Google Scholar 

  • Eppley RW, Holm-Hansen O, Strickland JDH (1968) Some observations on the vertical migration of dinoflagellates. J. Phycol. 4: 333–340.

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    PubMed  CAS  Google Scholar 

  • Kamykowski D, Zentara SJ (1977) The diurnal vertical migration of motile phytoplankton through temperature gradients. Limnol. Oceanogr. 22: 148–151.

    Google Scholar 

  • Kohata K, Watanabe M (1986) Synchronous division and the pattern of diel vertical migration of Heterosigma akashiwo (Hada) Hada (Raphidophyceae) in a laboratory culture tank. J. exp. mar. Biol. Ecol. 100: 209–224.

    Article  Google Scholar 

  • Kohata K, Watanabe M (1988) Diel changes in the composition of photosynthetic pigments and cellular carbon and nitrogen in Chattonella antiqua (Raphidophyceae). J. Phycol. 24: 58–66.

    Article  CAS  Google Scholar 

  • Kuesel AC, Sianoudis J, Leibfritz D, Grimme LH, Mayer A (1989) P-31 in-vivo NMR investigation on the function of polyphosphates as phosphate-and energysource during the regreening of the green alga Chlorella fusca. Arch. Microbiol. 152: 167–171.

    Article  CAS  Google Scholar 

  • Lundberg P, Weich RG, Jensén P, Vogel HJ (1989) Phosphorus-31 and Nitrogen-14 NMR studies of the uptake of phosphorus and nitrogen compounds in the marine macroalgae Ulva lactuca. Plant Physiol. 89: 1380–1387.

    Article  PubMed  CAS  Google Scholar 

  • Menzel DW, Corwin N (1965) Themeasurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Miyata K, Hattori A, Ohtsuki A (1986) Variation of cellular phosphorus composition of Skeletonema costatum and Heterosigma akashiwo grown in chemostats. Mar. Biol. 93: 291–297.

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nakamura Y, Umemori T, Watanabe M (1989) Chemical environment for red tides due to Chattonella antiqua. Part 2. Daily monitoring of the marine environment throughout the outbreak period. J. Oceanogr. Soc. Jpn. 45: 116–128.

    Article  CAS  Google Scholar 

  • Nakamura Y, Watanabe MM (1983) Growth characteristics of Chattonella antiqua (Raphidophyceae). Part 2. Effects of nutrients on growth. J. Oceanogr. Soc. Jpn. 39: 151–155.

    Article  Google Scholar 

  • Navon G, Shulman RG, Yamane T, Eccleshall TR, Lam KB, Baronofsky JJ, Marmur J (1979) Phosphorus-31 nuclear magnetic resonance studies of wild-type and lycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18: 4487–4499.

    Article  PubMed  CAS  Google Scholar 

  • Rhee GY (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495–506.

    Article  CAS  Google Scholar 

  • Salonen K, Jones RI, Arvola L (1984) Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwat. Biol. 14: 431–438.

    Article  CAS  Google Scholar 

  • Watanabe M, Kohata K, Kimura T (1991) Diel vertical migration and nocturnal uptake of nutrients by Chattonella antiqua under stable stratification. Limnol. Oceanogr. 36: 593–602.

    Article  Google Scholar 

  • Watanabe M, Kohata K, Kimura T, Takamatsu T, Yamaguchi S, Ioriya T (1995) Generation of Chattonella antiqua bloom by imposing a shallow nutricline in a mesocosm. Limnol. Oceanogr. 40: 1447–1460.

    Article  Google Scholar 

  • Watanabe M, Kohata K, Kunugi K (1987) 31P nuclear magnetic resonance study of intracellular phosphate pools and polyphosphate metabolism in Heterosigma akashiwo (Hada) Hada (Raphidophyceae). J. Phycol. 23: 54–62.

    Article  CAS  Google Scholar 

  • Watanabe M, Kohata K, Kunugi M (1988) Phosphate accumulation and metabolism by Heterosigma akashiwo (Raphidophyceae) during diel vertical migration in a stratified microcosm. J. Phycol. 24: 22–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Watanabe, M., Kohata, K. et al. Phosphate metabolism during diel vertical migration in the raphidophycean alga, Chattonella antiqua. Journal of Applied Phycology 11, 301–311 (1999). https://doi.org/10.1023/A:1008196308564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008196308564

Navigation