Skip to main content
Log in

Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biosorption, the passive accumulation of metal ions by biomass, can be used for purifying metal bearing wastewater. Seaweeds represent a readily available source of biosorbent material that possesses a high metal binding capacity. For example, Sargassum can accumulate 2 mequiv of Cd per gram of biomass i.e. 10% of its dry weight. Binding of Cd and Cu by Sargassum is an ion exchange process involving both covalent and ionic bonds. The amount of cations bound covalently or by complexation can be predicted using multi-component sorption isotherms involving 2 types of binding sites, carboxyl and sulphate. A Donnan model was used to account for the effect of ionic strength and electrostatic attraction. The use of a multi-component isotherm that included one term for Na binding was less appropriate than the Donnan model for modelling ionic strength effects. It was possible to predict metal and proton binding as a function of the pH value, metal concentration and ionic strength of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartschat BM, Cabaniss SE, Morel FMM (1992) Oligoelectrolyte model for cation binding by humic substances. Envir. Sci. Technol. 26: 284–294.

    Article  CAS  Google Scholar 

  • Buffle J (1988) Complexation Reactions in Aquatic Systems: An Analytical Approach. Ellis Horwood Ltd., Chichester, UK: 156–329.

    Google Scholar 

  • Crist RH, Martin JR, Carr D,Watson JR, Clarke HJ, Crist DR (1994) Interactions of metals and protons with algae. 4. Ion exchange vs. adsorption models and a reassessment of Scatchard plots; ionexchange rates and equilibria compared with calcium alginate. Envir. Sci. Technol. 28: 1859–1866

    Article  CAS  Google Scholar 

  • Crist RH, Oberholser K, Schwartz D, Marzoff J, Ryder D, Crist DR (1988) Interactions of metals and protons with algae. Envir. Sci. Technol. 22: 755–760.

    Article  CAS  Google Scholar 

  • Ferguson J, Bubela B (1974) The concentration of Cu (II), Pb (II), and Zn (II) from aqueous solutions by particulate algal matter. Chem. Geol. 13: 163–186.

    Article  CAS  Google Scholar 

  • Fourest E, Volesky B (1996) Contribution of sulphonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Envir. Sci. Technol. 30: 277–282.

    Article  CAS  Google Scholar 

  • Greene B, McPherson R, Darnall D (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, Pasino R (eds), Metals Speciation, Separation and Recovery, Lewis, Chelsea, MI: 315–338.

    Google Scholar 

  • Haug A (1961) Dissociation of alginic acid. Acta Chem. Scand. 15: 950–952.

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 41: 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Katchalsky A, Michaeli I (1955) Polyelectrolyte gels in salt solutions. J. Polym. Sci. 15: 69–86.

    Article  CAS  Google Scholar 

  • Kinniburgh DG, Milne CJ, Benedetti MF, Pinheiro JP, Filius J, Koopal LK, Van Riemsdijk WH (1996) Metal ion binding by humic acid: Application of the NICA-Donnan model. Envir. Sci. Technol. 30: 1687–1698.

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) Themechanism of cobalt biosorption. Biotechnol. Bioengng 33: 823–831.

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361–1403.

    Article  CAS  Google Scholar 

  • Lee RE (1980) Phycology. Cambridge University Press, Cambridge, UK: 224–225.

    Google Scholar 

  • Lin FG, Marinsky JA (1993) A Gibbs-Donnan-based interpretation of the effect of medium counterion concentration levels on the acid dissociation properties of alginic acid and chondroitin sulfate. React. Polym. 19: 27–45.

    Article  CAS  Google Scholar 

  • Marinsky JA (1987) A two-phase model for the interpretation of proton and metal ion interaction with charged polyelectrolyte gels and their linear analogs. In Stumm W (ed.), Aquatic Surface Chemistry, Wiley Interscience, John Wiley and Sons, NY: 49–81.

    Google Scholar 

  • Ramelow GJ, Fralick D, Zhao Y (1992) Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72: 81–93.

    CAS  Google Scholar 

  • Schiewer S, Volesky B (1995) Modelling of the proton-metal ion exchange in biosorption. Envir. Sci. Technol. 29: 3049–3058.

    CAS  Google Scholar 

  • Schiewer S, Volesky B (1997a) Ionic strength and electrostatic effects in biosorption of protons. Envir. Sci. Technol. 30: 1863–1871.

    Article  Google Scholar 

  • Schiewer S, Volesky B (1997b) Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Envir. Sci. Technol. 30: 2478–2485.

    Article  Google Scholar 

  • South GR, Whittick A (1987) Introduction to Phycology. Blackwell Scientific Publications, Oxford, UK: 61–62.

    Google Scholar 

  • Tipping E (1993) Modelling the competition between alkaline earth cations and trace metal species for binding by humic substances. Envir. Sci. Technol. 27: 520–529.

    Article  CAS  Google Scholar 

  • Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol. Bioengng 23: 583–604.

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol. Progr. 11: 235–250.

    Article  CAS  Google Scholar 

  • Westall JC, Jones JD, Turner GD, Zachara JM (1995) Models for association of metal ions with heterogeneous environmental sorbents: I. Complexation of Co(II) by leonardite humic acid as a function of pH and NaClO4 concentration. Envir. Sci. Technol. 29: 951–959.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiewer, S. Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass. Journal of Applied Phycology 11, 79–87 (1999). https://doi.org/10.1023/A:1008025411634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008025411634

Navigation