Skip to main content
Log in

A General Framework for Geometry-Driven Evolution Equations

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents a general framework to generate multi-scale representations of image data. The process is considered as an initial value problem with an acquired image as initial condition and a geometrical invariant as “driving force” of an evolutionary process. The geometrical invariants are extracted using the family of Gaussian derivative operators. These operators naturally deal with scale as a free parameter and solve the ill-posedness problem of differentiation. Stability requirements for numerical approximation of evolution schemes using Gaussian derivative operators are derived and establish an intuitive connection between the allowed time-step and scale. This approach has been used to generalize and implement a variety of nonlinear diffusion schemes. Results on test images and medical images are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M. 1993. Axioms and fundamental equations of image processing. Arch. for Rational Mechanics, 123(3):199–257.

    Google Scholar 

  • Alvarez, L., Lions, P.-L., and Morel, J.-M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Num. Anal., 29(3):845–866.

    Google Scholar 

  • Alvarez, L. and Mazorra, L. 1994. Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Num. Anal., 31(1):590–605.

    Google Scholar 

  • Ames, W.F. 1972. Nonlinear Partial Differential Equations in Engineering. Academic Press: New York, San Francisco, London, vols. 1–2.

    Google Scholar 

  • Angenent, S. 1991a. On the formation of singularities in the curve shortening flow. J. Differential Geometry, 33:601–633.

    Google Scholar 

  • Angenent, S. 1991b. Parabolic equations for curves on surfaces, part II. Intersections, blowup, and generalized solutions. Annals of Mathematics, 133:171–215.

    Google Scholar 

  • Babaud, J., Witkin, A.P., Baudin, M., and Duda, R.O. 1986. Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(1):26–33.

    Google Scholar 

  • Brockett, R.W. and Maragos, P. 1992. Evolutions equations for continuous-scale morphology. In International Conference on Acoustics, Speech, Signal Processing.

  • Caselles, V., Catte, F., Coll, T., and Dibos, F. 1992. A geometric model for active contours in image processing. Technical Report 9210, Ceremade, Université Paris Dauphine.

    Google Scholar 

  • Catté, F., Lions, P.-L., Morel, J.-M., and Coll, T. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Num. Anal., 29(1):182–193.

    Google Scholar 

  • Chen, M. and Yan, P. 1989. A multiscale approach based on morphological filtering. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7):694–700.

    Google Scholar 

  • Cohignac, T., Eve, F., Guichard, F., and Lopez, C. 1993. Affine morphological scale space: Numerical analysis of its fundamental equation. Technical report, Ceremade, Universite Paris Dauphine.

    Google Scholar 

  • Crandall, M.G. and Lions, P.L. 1983. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277:1–42.

    Google Scholar 

  • Epstein, C.L. and Gage, M. 1987. The curve shortening flow. In Wave Motion: Theory, Modeling and Computation, A. Chorin and A. Majda (Eds.). Springer Verlag: New York.

    Google Scholar 

  • Falcone, M. and Ferretti, R. 1994. Discrete time high order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numerische Mathematik, 67:315–344.

    Google Scholar 

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1992. Scale and the differential structure of images. Image and Vision Computing, 10(6):376–388.

    Google Scholar 

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1993. Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision, 3(4):327– 348.

    Google Scholar 

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1994a. Images: Regular tempered distributions. In Proc. of the NATO Advanced Research Workshop Shape in Picture-Mathematical Description of Shape in Greylevel Images, Y.-LO, A. Toet, H.J.A.M. Heijmans, D.H. Foster, and P. Meer (Eds.), NATO ASI Series F, vol. 126, pp. 651–660.

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1994b. Linear scale-space. Journal of Mathematical Imaging and Vision, 4(4):325–351.

    Google Scholar 

  • Gage, M. 1984. Curve shortening makes convex curves circular. Invent. Math., 76:357–364.

    Google Scholar 

  • Gage, M. and Hamilton, R.S. 1986. The heat equation shrinking convex plane curves. J. Differential Geometry, 23:69–96.

    Google Scholar 

  • Gerig, G., Kübler, O., Kikinis, R., and Jolesz, F.A. 1992. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11(2):221–232.

    Google Scholar 

  • Grayson, M. 1987. The heat equation shrinks embedded plane curves to round points. Journal of Differential Geometry, 26:285–314.

    Google Scholar 

  • Hillen, B. 1993. Elsevier's interactive anatomy, paranasal sinuses & anterior skull base. CD-ROM interactive.

  • Kimia, B.B. 1990. Conservation Laws and a Theory of Shape. Ph.D. thesis, McGill University.

  • Kimia, B.B., Tannenbaum, A., and Zucker, S.W. 1990. Towards a computational theory of shape, an overview. In Proc. First European Conference on Computer Vision, New York, vol. 427, pp. 402–407.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A., and Zucker, S.W. 1994. Shapes, shocks, and deformations, I. International Journal of Computer Vision, 15(3):189–224.

    Google Scholar 

  • Koenderink, J.J. 1984. The structure of images. Biol. Cybern., 50:363–370.

    Google Scholar 

  • LeVeque, R.J. 1992. Numerical Methods for Conservation Laws. Birkhäuser: Boston.

    Google Scholar 

  • Malladi, R., Sethian, J.A., and Vemuri, B.C. 1995. Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(2):158–174.

    Google Scholar 

  • Maragos, P. 1987. Tutorial on advances in morphological image processing and analysis. Optical Engineering, 26 (7):623– 632.

    Google Scholar 

  • Mokhatarian, F. and Mackworth, A. 1992. A theory of multi-scale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Analysis and Machine Intelligence, 14:789– 805.

    Google Scholar 

  • Niessen, W.J., ter Haar Romeny, B.M., Florack, L.M.J., Salden, A.H., and Viergever, M.A. 1994. Nonlinear diffusion of scalar images using well-posed differential operators with applications in medical imaging. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR94, Seattle, WA.

  • Niessen, W.J., ter Haar Romeny, B.M., and Viergever, M.A. 1994. Numerical analysis of geometry-driven diffusion equations. In Geometry-Driven Diffusion in Computer Vision, B.M. ter Haar Romeny (Ed.). Computational Imaging and Vision. Kluwer Academic Publishers: B.V., pp. 393–410

    Google Scholar 

  • Olver, P., Sapiro, G., and Tannenbaum, A. 1994. Differential invariant signatures and flows in computer vision: A symmetry group approach. In Geometry-Driven Diffusion in Computer Vision, B.M. ter Haar Romeny (Ed.). Computational Imaging and Vision. Kluwer Academic Publishers: B.V., pp. 255–306.

    Google Scholar 

  • Osher, S. and Rudin, L.I. 1990. Feature-oriented image enhancement using shock filters. SIAM J. Num. Anal., 27:919–940.

    Google Scholar 

  • Osher, S. and Sethian, S. 1988. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formalism. J. Computational Physics, 79:12–49.

    Google Scholar 

  • Osher, S. and Shu, C. 1991. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal of Numerical Analysis, 28(4):907–922.

    Google Scholar 

  • Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(7):629–639.

    Google Scholar 

  • Rudin, L. 1987. Images, numerical analysis of singularities and shock filters. Technical Report 5250:87, Caltech, C.S. Dept.

  • Rudin, L.I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268.

    Google Scholar 

  • Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., and Bruckstein, A.M. 1993. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26(9):1363–1372.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scale-space. International Journal of Computer Vision, 11:25–44.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1994. On affine plane curve evolution. Journal of Functional Analysis, 119(1):79–120.

    Google Scholar 

  • Sapiro, G., Tannenbaum, A., You, Y., and Kaveh, M. 1994. Experiments on geometric enhancement. In International Conference on Image Processing, pp. 472–475.

  • Schwartz, L. 1966. Théorie des Distributions. Hermann & Cie.

  • Sethian, J.A. 1982. An Analysis of Flow Propagation. Ph.D. thesis, University of California.

  • Sethian, J.A. 1985. Curvature and the evolution of fronts. Comm. Math. Phys., 101:487–499.

    Google Scholar 

  • Sethian, J.A. 1990. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws. Journal of Differential Geometry, 31:131–161.

    Google Scholar 

  • ter Haar Romeny, B.M. (Ed.) 1994. Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision. Kluwer Academic Publishers: Dordrecht.

    Google Scholar 

  • ter Haar Romeny, B.M., Niessen, W.J., Wilting, J., and Florack, L.M.J. 1994. Differential structure of images: Accuracy of representation. In Proc.First IEEE Internat. Conf. on Image Processing, Austin, TX, pp. 21–25.

  • van den Boomgaard, R. and Smeulders, A.W.M. 1994. The morphological structure of images, the differential equations of morphological scale-space. IEEE Trans. Pattern Analysis and Machine Intelligence, 16(11):1101–1113.

    Google Scholar 

  • Vincken, K.L. and Appelman, F.J.R. 1991. Accurate conversion of geometrical objects to voxel-based images. Report 3DCV 91-20, Utrecht University.

  • Weickert, J. 1994. Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Technical Report 110, Laboratory of Technomathematics.

  • Whitaker, R. and Gerig, G. 1994. Vector-valued diffusion. In Geometry-Driven Diffusion in Computer Vision, B.M. ter Haar Romeny (Ed.). Computational Imaging and Vision. Kluwer Academic Publishers: B.V., pp. 93–134.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niessen, W.J., Romeny, B.M.T.H., Florack, L.M. et al. A General Framework for Geometry-Driven Evolution Equations. International Journal of Computer Vision 21, 187–205 (1997). https://doi.org/10.1023/A:1007995731951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007995731951

Keywords

Navigation