Skip to main content
Log in

Hydrogen-Bonded Urea-Anion Host Lattices. Part 4. Comparative Study of Inclusion Compounds of Urea with Tetraethylammonium and Tetraethylphosphonium Chlorides

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

New inclusion complexes (C2H5)4E+Cl-⋅2(NH2)2CO(1, E = N; 2, E = P) have beenprepared and characterized by X-ray crystallography. Crystal data, MoKα radiation: 1, space group P21/c,Z = 4, a = 10.492(6), b = 14.954(8), c = 10.335(6) Å, β = 91.02(5)°, R F = 0.050 for 1527 observed data; 2, space group Pmn21, Z = 2, a = 7.446(1), b = 9.200(2), c = 12.753(3) Å, R F = 0.079 for 519 observed data. In compound 1 the tetraethylammonium ions are sandwiched between puckered layers, which are constructed from the linkage of chloride ions and wide urea ribbons each composed of a broadside arrangement of centrosymmetric hydrogen-bonded urea dimers. In the crystal structure of 2, hydrogen-bonded urea ribbons running parallel to [100] are connected by chloride ions to generate a sawtooth wave layer, and stacked columns of tetraethylphosphonium cations are sandwiched between adjacent layers.

Supplementary Data relating to this article have been deposited with the British Library as Supplementary Publication No. SUP 82216 (11 pages).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Fetterly: in L. Mandelcorn (ed.), Non-stoichiometric Compounds, pp 491–567. Academic Press, New York (1964).

    Google Scholar 

  2. K. Takemota and N. Sonoda: in J. L. Atwood, J. E. D. Davies and D. D. MacNicol (eds.), Inclusion Compounds, Vol. 2, pp 47–67. Academic Press, London (1984).

    Google Scholar 

  3. T. W. Bell and J. Liu: J. Am. Chem. Soc. 110, 3673 (1988).

    Google Scholar 

  4. W. Schlenk: Liebigs Ann. Chem. 565, 204 (1949).

    Google Scholar 

  5. A. E. Smith: J. Chem. Phys. 18, 150 (1950).

    Google Scholar 

  6. A. E. Smith: Acta Crystallogr. 5, 224 (1952).

    Google Scholar 

  7. F. Laves, N. Nicolaides, and K. C. Peng: Z. Kristallogr. 121, 258 (1965).

    Google Scholar 

  8. Y. Chatani, Y. Taki and H. Tadokoro: Acta Crystallogr. Sect. B 33, 309 (1977).

    Google Scholar 

  9. Y. Chatani, H. Anraku, and Y. Taki: Mol. Cryst. Liq. Cryst. 48, 219 (1978).

    Google Scholar 

  10. R. Forst, H. Jagodzinski, H. Boysen, and F. Frey; Z. Kristallogr. 174, 56 (1986); 174, 58 (1986).

    Google Scholar 

  11. R. Forst, H. Boysen, F. Frey, H. Jagodzinski, and C. Zeyen: J. Phys. Chem. Solids 47, 1089 (1986).

    Google Scholar 

  12. R. Forst, H. Jagodzinski, H. Boysen, and F. Frey: Acta Crystallogr., Sect. B 43, 187 (1987).

    Google Scholar 

  13. T. C. W. Mak and R. K. McMullan: J. Incl. Phenom. 6, 473 (1988).

    Google Scholar 

  14. W. Pryor and P. L. Sanger: Acta Crystallogr., Sect. A 26, 543 (1970).

    Google Scholar 

  15. D. Rosenstein, R. K. McMullan, D. Schwarzenbach, and G. A. Jeffrey: Am. Crystallogr. Assoc. Abstr. Papers (Summer Meeting), p. 152 (1973).

  16. T. C. W. Mak: unpublished data.

  17. Q. Li and T. C. W. Mak: J. Incl. Phenom. 20, 73 (1995).

    Google Scholar 

  18. Q. Li and T. C. W. Mak: Acta Crystallogr., Sect. B(CR 511).

  19. Q. Li and T. C. W. Mak: J. Incl. Phenom. 27, 319 (1997).

    Google Scholar 

  20. Q. Li and T. C. W. Mak: J. Incl. Phenom.accepted.

  21. H. Schmidbaur, G. Blaschke, B. Zimmer-Gasser, and U. Schubert: Chem. Ber. 113, 1612 (1980).

    Google Scholar 

  22. D. L. Thorn, R. L. Harlow, and N. Herron: Inorg. Chem. 34, 2629 (1995).

    Google Scholar 

  23. W. G. Haije, J. A. L. Dobbelaar, and W. J. A. Maaskant: Acta Crystallogr., Sect. C 42, 1485 (1986).

    Google Scholar 

  24. R. A. Sparks: in F.R. Ahmed (ed.), Crystallographic Computing Techniques, p. 452. Munksgaard, Copenhagen (1976).

    Google Scholar 

  25. G. Kopfmann and R. Huber: Acta Crystallogr., Sect. A 24, 348 (1968).

    Google Scholar 

  26. G. M. Sheldrick: in D. Sayre (ed.), Computational Crystallography, Oxford University Press, New York (1982), pp 506–514.

    Google Scholar 

  27. International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham (1974) (Distrib.: Kluwer Academic Publishers, Dordrecht), pp. 55, 99, 149.

  28. Q. Li and T. C. W. Mak: Acta Crystallogr., Sect. C.in press (C960826-KH1101).

  29. Q. Li and T. C.W. Mak: J. Incl. Phenom. 23, 233 (1995).

    Google Scholar 

  30. M. R. Pressprich and R. D. Willet: Acta Crystallogr., Sect. C 47, 1188 (1991).

    Google Scholar 

  31. H. Schmidbaur, G. Muller, B. Milewski-Mahrla, and U. Schubert: Chem. Ber. 113, 2575 (1980).

    Google Scholar 

  32. M. L. Glówka and Z. Galdecki: Acta Crystallogr., Sect. B 36, 2312 (1980).

    Google Scholar 

  33. T. Kovacs and L. Parkanyi: Cryst. Struct. Commun. 11, 1565 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LI, Q., MAK, T.C.W. Hydrogen-Bonded Urea-Anion Host Lattices. Part 4. Comparative Study of Inclusion Compounds of Urea with Tetraethylammonium and Tetraethylphosphonium Chlorides. Journal of Inclusion Phenomena 28, 151–161 (1997). https://doi.org/10.1023/A:1007985329632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007985329632

Navigation