Skip to main content
Log in

Loop Observables for BF Theories in Any Dimension and the Cohomology of Knots

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A generalization of Wilson loop observables for BF theories in any dimension is introduced within the Batalin–Vilkovisky framework. The expectation values of these observables are cohomology classes of the space of imbeddings of a circle. One of the resulting theories discussed in the Letter has only trivalent interactions and, irrespective of the actual dimension, looks like a three-dimensional Chern–Simons theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, M., Kontsevich, M., Schwarz, A. and Zaboronsky, O.: The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A 12 (1997), 1405–1430.

    Google Scholar 

  2. Batalin, I. A. and Vilkovisky, G. A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309–312; Fradkin, E. S. and Fradkina, T. E.: Quantization of relativistic systems with boson and fermion first-and second-class constraints, Phys. Lett. B 72 (1978), 343-348.

    Google Scholar 

  3. Blau, M. and Thompson, G.: Topological gauge theories of antisymmetric tensor fields, Ann. Phys. 205 (1991), 130–172; Birmingham, D., Blau, M., Rakowski, M. and Thompson, G.: Topological field theory, Phys. Rep. 209 (1991), 129.

    Google Scholar 

  4. Bott, R. and Taubes, C.: On the self-linking of knots, J. Math. Phys. 35 (1994), 5247–5287.

    Google Scholar 

  5. Cattaneo, A. S.: Cabled Wilson loops in BF theories, J. Math. Phys. 37 (1996), 3684–3703.

    Google Scholar 

  6. Cattaneo, A. S.: Abelian BF theories and knot invariants, Comm. Math. Phys 189 (1997), 795–828.

    Google Scholar 

  7. Cattaneo, A. S., Cotta-Ramusino, P., Fröhlich, J. and Martellini, M.: Topological BF theories in 3 and 4 dimensions, J. Math. Phys. 36 (1995), 6137–6160.

    Google Scholar 

  8. Cattaneo, A. S., Cotta-Ramusino, P., Fucito, F., Martellini, M., Rinaldi, M., Tanzini, A. and Zeni, M.: Four-dimensional Yang-Mills theory as a deformation of topological BF theory, Comm. Math. Phys 197 (1998), 571–621.

    Google Scholar 

  9. Cattaneo, A. S., Cotta-Ramusino, P. and Longoni, R.: Configuration spaces and Vassiliev classes in any dimension, math.GT/9910139.

  10. Cattaneo, A. S., Cotta-Ramusino, P. and Martellini, M.: Three-dimensional BF theories and the Alexander-Conway invariant of knots, Nuclear Phys. B 346 (1995), 355–382.

    Google Scholar 

  11. Cattaneo, A. S., Cotta-Ramusino, P. and Rinaldi, M.: BRST symmetries for the tangent gauge group, J. Math. Phys. 39 (1998), 1316–1339.

    Google Scholar 

  12. Cattaneo, A. S., Cotta-Ramusino, P. and Rinaldi, M.: Loop and path spaces and four-dimensional BF theories: connections, holonomies and observables, Comm. Math. Phys 204 (1999), 493–524.

    Google Scholar 

  13. Cattaneo, A. S. and Felder, G.: A path integral approach to the Kontsevich quantization formula, math.QA/9902090, to appear in Comm. Math. Phys.

  14. Cattaneo, A. S. and Rossi, C. A.: Higher-dimensional BF theories in the Batalin-Vilkovisky formalism: The BV action and generalized Wilson loops, in preparation.

  15. Cotta-Ramusino, P. and Martellini, M.: BF theories and 2-knots, In: J. Baez (ed.), Knots and Quantum Gravity, Oxford Lecture Ser. Math. Appl. 1, Oxford Univ. Press, New York, 1994, pp. 169–189.

    Google Scholar 

  16. Damgaard, P. H. and Grigoriev, M. A.: Superfield BRST charge and the master action, hep-th:/9911092.

  17. Fucito, F., Martellini, M. and Zeni, M.: Nonlocal observables and confinement in BF formulation of YM theory, hep-th:/9611015, to appear in Proc. Cargese Summer School (July 1996).

  18. Gerstenhaber, M.: The cohomology structure of an associative ring, Ann. Math. 78 (1962), 267–288; On the deformation of rings and algebras, Ann. Math. 79 (1964), 59-103.

    Google Scholar 

  19. Horowitz, G. T.: Exactly soluble diffeomorphism invariant theories, Comm. Math. Phys 125 (1989), 417–436.

    Google Scholar 

  20. Kontsevich, M.: Feynman diagrams and low-dimensional topology, In: A. Joseph, F. Mignot, F. Murat, B. Prum and R. Rentschler (eds), First European Congress of Mathematics, Volume II (Paris, 1992), Progr. Math. 120, Birkhäuser, Basel, 1994, pp. 97–121.

    Google Scholar 

  21. Schwarz, A. S.: The partition function of degenerate quadratic functionals and Ray-Singer invariants, Lett. Math. Phys. 2 (1978), 247–252.

    Google Scholar 

  22. Vassiliev, V. A.: Cohomology of knot spaces, In: V. I. Arnold (ed.), Theory of Singularities and Its Applications, Amer. Math. Soc., Providence, 1990, pp. 23–69.

  23. Witten, E.: Some remarks about string field theory, Phys. Scripta 15 (1987), 70–77.

    Google Scholar 

  24. Witten, E.: Quantum field theory and the Jones polynomial, Comm. Math. Phys 121 (1989), 351–399.

    Google Scholar 

  25. Witten, E.: 2 + 1-dimensional gravity as an exactly soluble system, Nuclear Phys. B 311 (1988/89), 46–78.

    Google Scholar 

  26. Witten, E.: Chern-Simons gauge theory as a string theory, In: H. Hofer, C. H. Taubes, A. Weinstein and E. Zehnder (eds), The Floer Memorial Volume, Progr. Math. 133, Birkhäuser, Basel, 1995, pp. 637–678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, A.S., Cotta-Ramusino, P. & Rossi, C.A. Loop Observables for BF Theories in Any Dimension and the Cohomology of Knots. Letters in Mathematical Physics 51, 301–316 (2000). https://doi.org/10.1023/A:1007629020730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007629020730

Navigation