Skip to main content
Log in

Magnetic moment and Mössbauer spectral studies of spin-crossover in tris(N,N′-dialkyldithiocarbamato)iron(III) complexes and their thermal decomposition

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Room temperature Mössbauer spectra of tris(N,N′-dialkyldithiocarbamato)iron(III) complexes [(R2NCS2)3Fe] (R = Me, Et, n-Pr, i-Pr, n-Bu and i-Bu) exhibit an asymmetric doublet which can be resolved into two doublets, each corresponding to high and low spin states in equilibrium. The quadrupole splitting (ΔE Q ), in general, increases with the molecular weight of the alkyl group in both the cases. Plots of magnetic moment (μeff) versus temperature show that dimethyl-, diethyl-, di-n-propyl- and di-n-butyl-substituted dithiocarbamato complexes are equilibrium mixtures of high and low spin states at room temperature, but increasingly adopt low spin at the liquid nitrogen temperature. However, the di-i-propyl- and di-i-butyl-substituted dithiocarbamato complexes exhibit primarily low spin state in the 77–350 K range, with a small contribution (<15%) of high spin state. Fe—S stretching vibrations in far i.r. region also show spin equilibrium states. Thermogravimetric studies show fast decomposition in the 200–300 °C range, yielding Fe(SCN)3 as an intermediate product followed by slow decomposition, leading finally to constant weight corresponding to Fe2O3 at ca. 650 °C. Mössbauer spectra of the final products of all the complexes exhibit a six line spectrum with H eff = 517 ± 3 kOe corresponding to that of α-Fe2O3 without any possibility of Fe2S3 as proposed in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Dutta and A. Syamal, Elements of Magnetochemistry, 2nd edit., Affliated East-West Press Pvt. Ltd., New Delhi, 1993, p. 157.

    Google Scholar 

  2. P. Gutlich in G.J. Long (Ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Plenum Press, New York, 1984, Vol. 1, p. 287.

    Google Scholar 

  3. P. Gutlich in R.H. Herber (Ed.), Chemical Mössbauer Spectro scopy, Plenum Press, New York and London, 1984, p. 27.

    Google Scholar 

  4. J.O. Hill and R.J. Magee, Rev. Inorg. Chem., 3, 141 (1981).

    Google Scholar 

  5. G.D. Thorn and R.A. Ludwig, The Dithiocarbamates and Related Compounds, Elsevier, New York, 1962.

    Google Scholar 

  6. R. Rickards, C.E. Johnson and H.A.O. Hill, J. Chem. Phys., 48, 5231 (1968).

    Google Scholar 

  7. A.H. Ewald, R.L. Martin, E. Sinn and A.H. White, Inorg. Chem., 8, 1837 (1969).

    Google Scholar 

  8. G.R. Hall and D.N. Hendrickson, Inorg. Chem., 15, 607 (1976).

    Google Scholar 

  9. B. Hutchinson, P. Neill, A. Finkelstein and J. Takemoto, Inorg. Chem., 20, 2000 (1981).

    Google Scholar 

  10. J.M. Fiddy, I. Hall, F. Grandjean, U. Russo and G.J. Long, Inorg. Chem., 26, 4138 (1987).

    Google Scholar 

  11. I. Morishima and T. Jizaka, J. Am. Chem. Soc., 96, 5279 (1974).

    Google Scholar 

  12. P.B. Merrithew and P.G. Rasmussen, Inorg. Chem., 11, 325 (1972).

    Google Scholar 

  13. R.B. Lanjewar and A.N. Garg, Polyhedron, 12, 2619 (1993).

    Google Scholar 

  14. M. Kopf, D. Varech, J. Tuchagues, D. Mansuy and I. Artaud, J. Chem. Soc., Dalton Trans., 991 (1998).

  15. Z.J. Zhong, J. Tao, Z. Yu, C. Dun, Y. Liu and X. You, J. Chem. Soc., Dalton Trans., 327 (1998).

  16. B.S. Manhas and S. Bala, Polyhedron, 24, 2465 (1988).

    Google Scholar 

  17. A.H. Ewald, R.L. Martin, I.G. Russo and A.H. White, Proc. Royal Soc., A280, 235 (1964).

    Google Scholar 

  18. J. Willemse, J.A. Cras, J.J. Stegerda and C.D. Keijers, Struct. Bonding, 28, 83 (1976).

    Google Scholar 

  19. R.J. Butcher, J.R. Ferraro and E. Sinn, Inorg. Chem., 15, 2077 (1976).

    Google Scholar 

  20. M. Sorai, J. Inorg. Nucl. Chem., 40, 1031 (1978).

    Google Scholar 

  21. D.C. Bradley and M.H. Gitlitz, J. Chem. Soc. A, 1152 (1969).

    Google Scholar 

  22. F. Bonati and R. Ugo, J. Organometal. Chem., 10, 257 (1967).

    Google Scholar 

  23. K. Nakanishi and P.H. Solomon, Infrared Absorption Spectroscopy, 2nd edit., Holden Day Inc., San Francisco, 1977, p. 50.

    Google Scholar 

  24. P. Gutlich, R. Link and A. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, Springer-Verlag, Berlin, 1978, p. 56.

    Google Scholar 

  25. A.K. Sharma, Thermochim. Acta, 104, 339 (1986).

    Google Scholar 

  26. G. D'Ascenzo and W.W. Wendlendt, J. Inorg. Nucl. Chem., 32, 2431 (1970).

    Google Scholar 

  27. R.B. Lanjewar and A.N. Garg, Ind. J. Chem., 31A, 849 (1992).

    Google Scholar 

  28. W. Kundig, H. Bommel, G. Constabaris and R.H. Lindquist, Phys. Rev., 142, 327 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, S., Sharma, C.L., Garg, A.N. et al. Magnetic moment and Mössbauer spectral studies of spin-crossover in tris(N,N′-dialkyldithiocarbamato)iron(III) complexes and their thermal decomposition. Transition Metal Chemistry 26, 81–88 (2001). https://doi.org/10.1023/A:1007115823823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007115823823

Keywords

Navigation