Skip to main content
Log in

Genetic dissection of myelin galactolipid function

  • Published:
Journal of Neurocytology

Abstract

The roles that the myelin galactolipids galactocerebroside (GalC) and sulfatide play in cellular differentiation, myelin formation and maintenance have been investigated for nearly 3 decades. During that time the primary approach has been to perturb lipid activity using antibodies and chemical agents in artificial systems. Recently, the isolation of the gene that encodes UDP-galactose:ceramide galactosyltransferase (CGT), the enzyme that catalyzes an essential step in the synthetic pathway of GalC and sulfatide, has enabled the generation of mice that lack myelin galactolipids. These mice display a severe tremor, hindlimb paralysis and electrophysiological defects. In addition, the CGT null mutants exhibit: 1) impaired oligodendrocyte differentiation, 2) myelin sheaths that are thin, incompletely compacted and unstable, and 3) structural abnormalities in the nodal and paranodal regions including disrupted axo-glial junctions. Collectively, these findings suggest that GalC and sulfatide are essential in myelin formation and maintenance, possibly by mediating intra- and intercellular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bansal, R., Gard A. L. & Feiffer, S. E. (1988) Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid. Journal of Neuroscience Research 21, 260–267.

    Google Scholar 

  • Bansal, R. & fieffer, S. E. (1989) Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proceedings of the National Academy of Sciences U.S.A. 86, 6181–6185.

    Google Scholar 

  • Bansal, R. & feiffer, E. S. (1994) Regulation of gene expression in mature oligodendrocytes by the specialized myelin-like membrane environment: antibody perturbation in culture with the monoclonal antibody R-mAb. Glia 12, 173–179.

    Google Scholar 

  • Bansal, R., Warrington, A. E., Gard, A. L., Ranscht, B. & feiffer, S. E. (1989) Multiple and novel specificities of monoclonal antibodies 01, 04, and R-mAb used in the analysis of oligodendrocyte development. Journal of Neuroscience Research 24, 548–557.

    Google Scholar 

  • Barbour, S., Edidin, M., Felding-Habermann, B., Taylor-Norton, J., Radin, N. S. & Fenderson, B. A. (1992) Glycolipid depletion using a ceramide analogue (PMDP) alters growth, adhesion, and membrane lipid organization in human A431 cells. Journal of Cellular Physiology 150, 610–619.

    Google Scholar 

  • Benjamins, J. A. & Dyer, C. A. (1990) Glycolipids and transmembrane signaling in oligodendroglia. Annals of the New York Academy of Science 605, 90–100.

    Google Scholar 

  • Bosio, A., Binczek, E. & Stoffel, W. (1996) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proceedings of the National Academy of Sciences USA 93, 13280–13285.

    Google Scholar 

  • Bosio, A., Bussow, H., Adam, J. & Stoffel, W. (1998) Galactosphingolipids and axono-glial interaction in myelin of the central nervous system. Cell and Tissue Research 292, 199–210.

    Google Scholar 

  • Cestaro, B., Cervato, G., Marchesini, S., Viani, P., Pistolesi, E. & Oliva, C. (1983) Electron spin resonance studies on the dynamics of phosphatidylcholine-sulfatide model membranes. Chemistry and Physics of Lipids 33, 251–262.

    Google Scholar 

  • Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., Suzuki, K. & Popko, B. (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional stability. Cell 86, 209–219.

    Google Scholar 

  • Coetzee, T., Dupree, J. L. & Popko, B. (1998a) Demyelination and altered expression of myelin-associated glycoprotein isoforms in the central nervous system of galactolipid-deficient mice. Journal of Neuroscience Research 54, 613–622.

    Google Scholar 

  • Coetzee, T., Suzuki, K. & Popko, B. (1998b) New perspectives on the function of myelin galactolipids. Trends in Neuroscience 21, 126–130.

    Google Scholar 

  • Coetzee, T., Suzuki, K., Nave, K.-A. & Popko, B. (1999) Myelination in the absence of galactolipids and proteolipid proteins. Molecular and Cellular Neuroscience 14, 41–51.

    Google Scholar 

  • Duncan, I. D., Hammang, J. P. & Trapp, B. D. (1987) Abnormal compact myelin in the myelin-deficient rat: absence of proteolipid protein correlates with a defect in the intermediate line. Proceedings of the National Academy of Sciences USA 84, 6287–6291.

    Google Scholar 

  • Dugandzija-Novakovic, S., Koszowski, A. G., Levinson, S. R. & Shrager, P. (1995) Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. Journal of Neuroscience 15(1), 492–503.

    Google Scholar 

  • Dupree, J. L., Suzuki, K. & Popko, B. (1998a) Galactolipids in the formation and function of the myelin sheath. Microscopy Research and Technique 41, 431–440.

    Google Scholar 

  • Dupree, J. L., Coetzee, T., Blight, A., Suzuki, K. & Popko, B. (1998b) Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. Journal of Neuroscience 18, 1642–1649.

    Google Scholar 

  • Dupree, J. L., Coetzee, T., Suzuki, K. & Popko, B. (1998c) Myelin abnormalities in mice deficient in galactocerebroside and sulfatide. Journal of Neurocytology 27, 649–659.

    Google Scholar 

  • Dyer, C. A. & Benjamins, J. A. (1988) Antibody to galactocerebroside alters organization of oligodendroglial membrane sheets in culture. Journal of Neuroscience 8, 4307–4318.

    Google Scholar 

  • Gard, A. L. & Pfeiffer, S. E. (1989) Oligodendrocyte progenitors isolated directly from developing telencephalon at a specific phenotypic stage: myelinogenic potential in a defined environment. Development 106, 119–132.

    Google Scholar 

  • Gould, R. M., Byrd, A. L. & Barbarese, E. (1995) The number of Schmidt-Lanterman incisures is more abundant in shiverer PNS myelin sheaths. Journal of Neurocytology 24, 85–98.

    Google Scholar 

  • Hakomori, S-I. (1990) Bifunctional role of glycosphingolipids. Journal of Biological Chemistry 265, 18713–18716.

    Google Scholar 

  • Hildebrand, D., Remahl, S., Persson, H. & Bjartmar, C. (1993) Myelinated nerve fibers in the CNS. Progress in Neurobiology 40, 319–384.

    Google Scholar 

  • Kan, C. C. & Kolesnick, R. N. (1992) A synthetic ceramide analog, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol selectively inhibits adherence during macrophage differentiation of human leukemia cells. Journal of Biological Chemistry 267(14), 9663–9667.

    Google Scholar 

  • Kennedy, P. G., Lisak, R. P. & Raff, M. C. (1980) Cell type-specific markers for human glial and neuronal cells in culture. Laboratory Investigation 43(4), 342–351.

    Google Scholar 

  • Klugmann, M., Schwab, M.H., Puhlhofer, A., Schneider, A., Zimmerman, F., Griffiths, I. R. & Nave, K.-A. (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70.

    Google Scholar 

  • Koynova, R. & Caffrey, M. (1995) Phases and phase transitions of the sphingolipids. Biochimica et Biophysica Acta 1255, 213–236.

    Google Scholar 

  • Kramer, E., Koch, T., Niehaus, A. & Trotter, J. (1997) Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes. Journal of Biological Chemistry 272, 8937–8945.

    Google Scholar 

  • Ledesma, M. D., Simons, K. & Dotti, C. G. (1998) Neuronal polarity: essential role of protein-complexes in axonal sorting. Proceedings of the National Academy of Sciences USA. 95, 3966–3971.

    Google Scholar 

  • Less, M. & Brostoff, S. L. (1984) Protein of myelin. In Myelin, 2nd ed. (edited by Morell, P.), pp. 197–224. New York: Plenum Press.

    Google Scholar 

  • Marcus, J. R., Dupree, J. L. & Popko, B. (submitted) Effects of myelin galactolipid elimination on oligodendrocyte development. Glia.

  • Morell, P. & Radin, N. S. (1969) Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8, 506–512.

    Google Scholar 

  • Norton, W. T. & Cammer, W. (1984) Isolation and characterization of myelin. In Myelin (edited byMorell, P.) pp. 147–196. New York: Plenum Press.

    Google Scholar 

  • Owens, G. C. & Bunge, R. P. (1990) Schwann cells depleted of galactocerebroside express myelin-associated glycoprotein and initiate but do not continue the process of myelination. Glia 3, 118–124.

    Google Scholar 

  • Peshva, P., Gloor, S., Schachner, M. & Probstmeir, R. (1997) Tenascin-R is an intrisic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide mediated mechanism. Journal of Neuroscience 17(12), 4642–4651.

    Google Scholar 

  • Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S. & Kennedy, M. C. (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274, 813–816.

    Google Scholar 

  • Ranscht, B., Wood, P. M. & Bunge R. P. (1987) Inhibition of in vitro peripheral myelin formation by monoclonal anti-galactocerebroside. Journal of Neuroscience 7, 2936–2947.

    Google Scholar 

  • Reynolds, R. & Wilkin, G. P. (1988) Development of macroglial cells in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial lineage from Myelin galactolipid function 279 precursor to mature myelinating cell. Development 102, 409–425.

    Google Scholar 

  • Rosenbluth, J. (1966) Redundant myelin sheaths and other ultrastructural features of the toad cerebellum. Journal of Cell Biology 28(1), 73–93.

    Google Scholar 

  • Rosenbluth, J., Liang, W.-L., Liu, Z., Guo, D. & Schiff, R. (1995) Paranodal structural abnormalities in rat CNS myelin developing in vivo in the presence of implanted 01 hybridoma cells. Journal of Neurocytology 24, 818–824.

    Google Scholar 

  • Rosenbluth, J., Liang, W. L., Liu, Z., Guo, D. & Schiff, R. (1996a) Expanded CNS myelin sheaths formed in situ in the presence of an IgM antigalactocerebroside-producing hybridoma. Journal of Neuroscience 16(8), 2635–2641.

    Google Scholar 

  • Rosenbluth, J., SToffel, W. & Schiff, R. (1996b) Myelin structure In proteolipid protein (PLP)-null mouse spinal cord. The Journal of Comparative Neurology 371, 336–344.

    Google Scholar 

  • Saida, T., Saida, K. & Silberberg, D. H. (1979a) Demyelination produced by experimental allergic neuritis serum and antigalactocerebroside antiserum in CNS cultures. Acta Neuropathologica 48, 19–25.

    Google Scholar 

  • Saida, K., Saida, T., Brown, M. J. & Silberberg, D. H. (1979b) In vivo demyelination induced by intraneural injection of anti-galactocerebroside serum a morphological study. American Journal of Pathology 95, 99–116.

    Google Scholar 

  • Saito, M., Macala, L. J., Roth, G. A., Bornstein, M. B. & Yu, R. K. (1986) Effect of antiglycolipid antisera on the lipid composition of cultured mouse spinal cords. Experimental Neurology 92, 752–756.

    Google Scholar 

  • Sergott, R. C., Brown, M. J. & Silberberg, D. H. (1986) Remyelination follows anti-body induced central nervous system demyelination. Annales of Neurology 20, 94–98.

    Google Scholar 

  • Shevchenko, A., Keller, P., Scheiffele, P., Mann, M. & Simons, K. (1997) Identification of components of trans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem spectrometry. Electrophoresis 18, 2591–2600.

    Google Scholar 

  • Simons, K. & Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Google Scholar 

  • Suzuki, K., Vanier, M. T., Coetzee, T. & Popko, B. (1999) Drastically abnormal gluco-and galactosylceramide composition does not affect ganglioside metabolism in the brain of mice deficient in galactosylceramide synthase. Neurochemical Research 24(4), 461–464.

    Google Scholar 

  • Van Meer, G., Van genderen, I. L., Van't hof, W., Burger, K. N. J. & Van Dper Bijl, P. (1993) Lipid transport from the Golgi to the plasma membrane of epithelial cells. In Molecular Mechanisms of Membrane Traffic (edited by Morre, D. J., Howell, K. E. & Bergeron, J. J. M.), pp. 181–185, Berlin: Springer Verlag.

    Google Scholar 

  • Vos, J. P., Lopes-cardozo, M. & Gadella, B. M. (1994) Metabolic and functional aspects of sulfogalactolipids. Biochimica et Biophysica Acta 1211, 125–149.

    Google Scholar 

  • Yamaji, T., Miyake, Y., Kozutsumi, Y. & Kawasaki, T. (1997) Neutral glycosphingolipids induce cell-cell aggregation of a variety of hematopoietic cell lines. European Journal of Biochemistry 247, 21–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupree, J.L., Popko, B. Genetic dissection of myelin galactolipid function. J Neurocytol 28, 271–279 (1999). https://doi.org/10.1023/A:1007049310758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007049310758

Keywords

Navigation