Skip to main content
Log in

Transferrin and Transferrin Receptor Function in Brain Barrier Systems

Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Iron (Fe) is an essential component of virtually all types of cells and organisms. In plasma and interstitial fluids, Fe is carried by transferrin. Iron-containing transferrin has a high affinity for the transferrin receptor, which is present on all cells with a requirement for Fe. The degree of expression of transferrin receptors on most types of cells is determined by the level of Fe supply and their rate of proliferation.

2. The brain, like other organs, requires Fe for metabolic processes and suffers from disturbed function when a Fe deficiency or excess occurs. Hence, the transport of Fe across brain barrier systems must be regulated. The interaction between transferrin and transferrin receptor appears to serve this function in the blood–brain, blood–CSF, and cellular–plasmalemma barriers. Transferrin is present in blood plasma and brain extracellular fluids, and the transferrin receptor is present on brain capillary endothelial cells, choroid plexus epithelial cells, neurons, and probably also glial cells.

3. The rate of Fe transport from plasma to brain is developmentally regulated, peaking in the first few weeks of postnatal life in the rat, after which it decreases rapidly to low values. Two mechanisms for Fe transport across the blood–brain barrier have been proposed. One is that the Fe–transferrin complex is transported intact across the capillary wall by receptor-mediated transcytosis. In the second, Fe transport is the result of receptor-mediated endocytosis of Fe–transferrin by capillary endothelial cells, followed by release of Fe from transferrin within the cell, recycling of transferrin to the blood, and transport of Fe into the brain. Current evidence indicates that although some transcytosis of transferrin does occur, the amount is quantitatively insufficient to account for the rate of Fe transport, and the majority of Fe transport probably occurs by the second of the above mechanisms.

4. An additional route of Fe and transferrin transport from the blood to the brain is via the blood–CSF barrier and from the CSF into the brain. Iron-containing transferrin is transported through the blood–CSF barrier by a mechanism that appears to be regulated by developmental stage and iron status. The transfer of transferrin from blood to CSF is higher than that of albumin, which may be due to the presence of transferrin receptors on choroid plexus epithelial cells so that transferrin can be transported across the cells by a receptor-mediated process as well as by nonselective mechanisms.

5. Transferrin receptors have been detected in neurons in vivo and in cultured glial cells. Transferrin is present in the brain interstitial fluid, and it is generally assumed that Fe which transverses the blood–brain barrier is rapidly bound by brain transferrin and can then be taken up by receptor-mediated endocytosis in brain cells. The uptake of transferrin-bound Fe by neurons and glial cells is probably regulated by the number of transferrin receptors present on cells, which changes during development and in conditions with an altered iron status.

6. This review focuses on the information available on the functions of transferrin and transferrin receptor with respect to Fe transport across the blood–brain and blood–CSF barriers and the cell membranes of neurons and glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  • Aizenman, Y., and de Vellis, J. (1987). Brain neurons develop in a serum and glial free environment: Effects of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res. 406:32–42.

    PubMed  Google Scholar 

  • Aizenman, Y., Weichsel, M. E., and de Vellis, J. (1986). Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development. Proc. Natl. Acad. Sci. USA 83:2263–2266.

    PubMed  Google Scholar 

  • Aldred, A. R., Dickson, P. W., Marley, P. D., and Schreiber, G. (1987). Distribution of transferrin synthesis in the brain and other tissues in the rat. J. Biol. Chem. 262:5293–5297.

    PubMed  Google Scholar 

  • Angelova-Gateva, P. (1979). Iron transferrin receptors in rat and human cerebrum. Agressologie 21:27–30.

    Google Scholar 

  • Baker, E., and Morgan, E. H. (1994). Iron transport. In Brock, J. H., Halliday, J. W., Pippard, M. J., and Powell, L. W. (eds.), Iron Metabolism in Health and Disease, Saunders, London, pp. 63–95.

    Google Scholar 

  • Banks, W. A., Kastin, A. J., Fasold, M. B., Barrera, C. M., and Augereau, G. (1988). Studies of the slow bidirectional transport of iron and transferrin across the blood-brain barrier. Brain Res. Bull. 21:881–885.

    PubMed  Google Scholar 

  • Barakat-Walter, I., Deloulme, J. C., Sensenbrenner, M., and Labourdette, G. (1991). Proliferation of chick embryo neuroblasts grown in the presence of horse serum requires exogenous transferrin. J. Neurosci. Res. 28:391–398.

    PubMed  Google Scholar 

  • Bartlett, W. P., Li, X.-S., and Connor, J. R. (1991). Expression of transferrin mRNA in the CNS of normal and jimpy mice. J. Neurochem. 57:318–322.

    PubMed  Google Scholar 

  • Bell, J. D., Brown, J. C. C., Sadler, P. J., Macleod, A. F., Sönksen, P. H., Hughes, R. D., and Williams, R. (1987). High resolution proton nuclear magnetic resonance studies of human cerebrospinal fluid. Clin. Sci. 72:563–570.

    PubMed  Google Scholar 

  • Bickel, V., Kank, Y.-S., Yoshikawa, T., and Pardridge, W. M. (1994). In vivo demonstration of subcellular localization of anti-transferrin receptor monoclonal antibody-colloidal gold conjugate in brain capillary endothelium. J. Histochem. Cytochem. 42:1493–1497.

    PubMed  Google Scholar 

  • Bloch, B., Povovici, T., Levin, M. J., Tuil, D., and Kahn, A. (1985). Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc. Natl. Acad. Sci. USA 82:6706–6710.

    PubMed  Google Scholar 

  • Bloch, B., Popovici, T. M., Chouham, S., Levin, M. J., Tuil, D., and Kahn, A. (1987). Transferrin gene expression in choroid plexus of the adult rat brain. Brain Res. Bull. 18:573–576.

    PubMed  Google Scholar 

  • Bowen, B., and Morgan, E. H. (1987). Anemia of the Belgrade rat: Evidence for defective membrane transport of iron. Blood 70:38–44.

    PubMed  Google Scholar 

  • Brightman, M. W. (1965). The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J. Cell. Biol. 26:99–123.

    PubMed  Google Scholar 

  • Broadwell, R. D. (1989). Transcytosis of macromolecules through the blood-brain barrier: A cell biological perspective and critical appraisal. Acta Neuropathol. 79:117–128.

    PubMed  Google Scholar 

  • Broadwell, R. D., Balin, B. J., Salcman, M., and Kaplan, R. S. (1983). Blood-brain barrier? Yes or no. Proc. Natl. Acad. Sci. USA 80:7352–7356.

    PubMed  Google Scholar 

  • Broadwell, R. D., Baker-Cairns, B., Friden, P. M., Oliver, C., and Villegas, J. C. (1996). Transcytosis of protein through the mammalian cerebral epithelium and endothelium. Exp. Neurol. 142:47–65.

    PubMed  Google Scholar 

  • Connor, J. R., and Fine, R. E. (1986). The distribution of transferrin immunoreactivity in the rat central nervous system. Brain Res. 368:319–328.

    PubMed  Google Scholar 

  • Connor, J. R., and Fine, R. E. (1987). Development of transferrin-positive oligodendrocytes in the rat central nervous system. J. Neurosci. Res. 17:51–59.

    PubMed  Google Scholar 

  • Connor, J. R., Phillips, T. M., Lakshman, M. R., Barron, K. D., Fine, R. E., and Csiza, C. K. (1987). Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats. J. Neurochem. 49:1523–1529.

    PubMed  Google Scholar 

  • Crowe, A., and Morgan, E. H. (1992). Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res. 592:8–16.

    PubMed  Google Scholar 

  • Crowe, A., and Morgan, E. H. (1994). Effects of chelators on iron uptake and release by the brain in the rat. Neurochem. Res. 19:71–76.

    PubMed  Google Scholar 

  • Cserr, H. F., Cooper, D. N., Suri, P. K., and Patlak, C. S. (1981). Efflux of radiolabelled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 240:F319-F328.

    PubMed  Google Scholar 

  • Descamps, L., Dehouck, M.-P., Torpier, G., and Cecchelli, R. (1996). Receptor mediated transcytosis of transferrin through blood-brain barrier endothelial cells. Am. J. Physiol. 270:H1149-H1158.

    PubMed  Google Scholar 

  • Dickson, P. W., Alred, A. R., Marley, P. D., Guo-Fen, T., Howlett, G. J., and Schreiber, G. (1985). High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem. Biophys. Res. Commun. 127:890–895.

    PubMed  Google Scholar 

  • Dion, T. L., Markelonis, G. J., Oh, T. H., Bregman, B. S., Pugh, M. A., Hobbs, S. L., and Kim, Y. C. (1988). Immunocytochemical localization of transferrin and mitochondrial malate dehydrogenase in the developing nervous system of the rat. Dev. Neurosci. 10:152–164.

    PubMed  Google Scholar 

  • Dunker, R. O., Harris, A. B., and Jenkins, D. P. (1976). Kinetics of horseradish peroxidase migration through cerebral cortex. Brain Res. 118:199–217.

    PubMed  Google Scholar 

  • Dwork, A. J., Schon, E. A., and Herbert, J. (1988). Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience 27:333–345.

    PubMed  Google Scholar 

  • Dwork, A. J., Lawler, G., Zybert, P. A., Durkin, M., Osman, M., Willson, N., and Barkai, A. I. (1990). An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Res. 518:31–39.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Evans, C. A. N., Malinowska, D. H., Møllgård, K., Reynolds, M. L., and Saunders, N. R. (1980). Blood-cerebrospinal fluid transfer of plasma proteins during fetal development in the sheep. J. Physiol. 300:457–465.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Evans, C. A. N., New, H., Reynolds, M. L., and Saunders, N. R. (1984). Synthesis of plasma proteins by rat fetal brain and choroid plexus. Int. J. Dev. Neurosci. 2:215–222.

    Google Scholar 

  • Ekblom, P., and Thesloff, I. (1995). The role of transferrin and extracellular matrix components in kidney development. Modern Cell Biol. 4:85–127.

    Google Scholar 

  • Espinosa de los Monteros, A., and Foucard, B. (1987). Effect of iron and transferrin on pure oligodendrocytes in culture; Characterization of a high-affinity transferrin receptor at different ages. Dev. Brain. Res. 35:123–130.

    Google Scholar 

  • Espinosa de los Monteros, A., Chiappelli, F., Fisher, R. S., and de Vellis, J. (1988). Transferrin: An early marker of oligodendrocytes in culture. Int. J. Dev. Neurosci. 6:167–175.

    PubMed  Google Scholar 

  • Espinosa de los Monteros, A., Kumar, S., Scully, S., Cole, R., and de Vellis, J. (1990). Transferrin gene expression and secretion by rat brain cells in vitro. J. Neurosci. Res. 25:576–580.

    PubMed  Google Scholar 

  • Espinosa de los Monteros, A., Sawaya, B. E., Guillou, F., Zakin, M. M., de Vellis, J., and Schaeffer, E. (1994). Brain-specific expression of the human transferrin gene. Similar elements govern expression in oligodendrocytes and a neuronal cell line. J. Biol. Chem. 269:24504–24510.

    PubMed  Google Scholar 

  • Farcich, E., and Morgan, E. H. (1992). Diminished iron acquisition by cells and tissues of Belgrade laboratory rats. Am. J. Physiol. 262:R220-R224.

    PubMed  Google Scholar 

  • Fishman, J. B., Rubin, J. B., Handrahan, J. V., Connor, J. R., and Fine, R. E. (1987). Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J. Neurosci. Res. 18:299–304.

    PubMed  Google Scholar 

  • Friden, P. M., Walus, L. R., Musso, G. F., Taylor, M. A., Malfroy, B, and Starzyk, R. M. (1991). Antitransferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88:4771–4775.

    PubMed  Google Scholar 

  • Friden, P. M., Olson, T. S., Obar, R., Walus, L. R., and Putney, S. D. (1996). Characterization, receptor mapping and blood-brain barrier transcytosis of antibodies to the human transferrin receptor. J. Pharmacol. Exp. Ther. 2:1491–1498.

    Google Scholar 

  • Gerber, M. R., and Connor, J. R. (1989). Do oligodendrocytes mediate iron regulation in the human brain? Ann. Neurol. 26:95–98.

    PubMed  Google Scholar 

  • Giometto, B., Bozza, F., Argentiero, V., Gallow, P., Pagni, S., Piccinno, M. G., and Tavolato, B. (1990). Transferrin receptors in the rat central nervous system. An immunocytochemical study. J. Neurol. Sci. 98:81–90.

    PubMed  Google Scholar 

  • Gocht, A., Keith, A. B., Candy, J. M., and Morris, C. M. (1993). Iron uptake in the brain of myelindeficient rats. Neurosci. Lett. 154:187–190.

    PubMed  Google Scholar 

  • Graeber, M. B., Raivich, G., and Kreutzberg, G. W. (1989). Increase of transferrin receptors and iron uptake in regenerating motor neurons. J. Neurosci. Res. 23:342–345.

    PubMed  Google Scholar 

  • Harford, J., Rouault, T. A., and Klausner, R. D. (1994). The control of cellular iron homeostasis. In Brock, J. H., Halliday, J. W., Pippard, M. J., and Powell, L. W. (eds.), Iron Metabolism in Health and Disease, Saunders, London, pp. 123–149.

    Google Scholar 

  • Harris, D. C., and Aisen, P. (1989). Physical biochemistry of the transferrins. In Loehr, T. W. (ed.), Iron Carriers and Iron Proteins, VCH, New York, pp. 239–371.

    Google Scholar 

  • Hill, J. M., Ruff, M. R., Weber, R. J., and Pert, C. B. (1985). Transferrin receptors in rat brain: Neuropeptide-like pattern and relationship to iron distribution. Proc. Natl. Acad. Sci. USA 82:4553–4557.

    PubMed  Google Scholar 

  • Idzerda, R. L., Huebers, H., Finch, C. A., and McKnight, G. S. (1986). Rat transferrin gene expression: Tissue-specific regulation by iron deficiency. Proc. Natl. Acad. Sci. USA 83:3723–3727.

    PubMed  Google Scholar 

  • Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., and Mason, D. Y. (1984). Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163.

    PubMed  Google Scholar 

  • Jordan, S. M., and Morgan, E. H. (1969). Plasma protein synthesis by tissue slices from pregnant and lactating rats. Biochim. Biophys. Acta 174:373–349.

    PubMed  Google Scholar 

  • Kalaria, R. N., Sromek, S. M., Grahovac, I., and Harik, S. I. (1992). Transferrin receptors in rat and human brain and cerebral microvessels and their status in Alzheimer's disease. Brain Res. 585:87–93.

    PubMed  Google Scholar 

  • Kaur, C., and Ling, E. A. (1995). Transient expression of transferrin receptors and localisation of iron in amoeboid microglia in postnatal rats. J. Anat. 186:165–173.

    PubMed  Google Scholar 

  • Kennard, M. L., Richardson, D. R., Gabathuler, R., Ponka, P., and Jefferies, W. A. (1995). A novel iron uptake mechanism mediated by GPI-anchored human p97. EMBO J. 17:4178–4186.

    Google Scholar 

  • Kennard, M. L., Feldman, H., Yamada, T., and Jefferies, W. A. (1996). Serum levels of the iron binding protein p97 are elevated in alzheimer's disease. Nature Med. 2:1230–1235.

    PubMed  Google Scholar 

  • Kuhn, L. Schulman, H., and Ponka, P. (1990). Iron-transferrin requirements and transferrin receptor expression in proliferating cells. In Ponka, P., Schulman, H., and Woodworth, R. C. (eds.), Iron Transport and Storage, CRC Press, Boca Raton; FL, pp. 149–191.

    Google Scholar 

  • Levin, M. J., Tuil, D., Uzan, G., Dreyfus, J.-C., and Kahn, A. (1984). Expression of transferrin gene during development of non-hepatic tissues. High levels of transferrin mRNA in fetal muscle and adult brain. Biochem. Biophys. Res. Commun. 122:212–217.

    PubMed  Google Scholar 

  • Lim, B.-C., McArdle, H. J., and Morgan, E. H. (1987). Transferrin-receptor interaction and iron uptake by reticulocytes of vertebrate animals-A comparative study. J. Comp. Physiol. 157:363–371.

    Google Scholar 

  • Markelonis, G. J., Oh, T. H., Park, L. P., Cha, C. Y., Sofia, C. A., Kim, J. W., and Azari, P. (1985a). Synthesis of transferrin receptor by cultures of embryonic chicken spinal neurons. J. Cell Biol. 100:8–17.

    PubMed  Google Scholar 

  • Markelonis, G. J., Oh, T. H., Park, L. P., Azari, P., and Max, S. R. (1985b). Receptor-mediated uptake of labelled transferrin by embryonic chicken dorsal root ganglion neurons in culture. Int. J. Dev. Neurosci. 3:257–266.

    Google Scholar 

  • Markelonis, G. J., Oh, T. H., Dion, T. L., Bregman, B. S., Pugh, M. A., Royal, G. M., Kim, Y. C., and Hobbs, S. L. (1988). Localization of transferrin within the developing vertebrate nervous system. Rev. Neurol. (Paris) 144:648–655.

    Google Scholar 

  • Mash, D. C., Pablo, J., Flynn, D. D., Efange, S. M. N., and Weiner, W. J. (1990). Characterization and distribution of transferrin receptors in the rat brain. J. Neurochem. 55:1972–1979.

    PubMed  Google Scholar 

  • Mesher, A. L., and Munaim, S. I. (1988). Transferrin and the growth-promoting effect of nerves. Int. Rev. Cytol. 110:1–26.

    PubMed  Google Scholar 

  • Møllgård, K., Jacobsen, M., Jacobsen, G. K., Clausen, P. P., and Saunders, N. R. (1979). Immunohistochemical evidence for an intracellular localization of plasma proteins in human foetal choroid plexus and brain. Neurosci. Lett. 14:85–90.

    PubMed  Google Scholar 

  • Møllgård K., Reynolds, M., Jacobsen, M., Dziegielewska, K. M., and Saunders, N. R. (1984). Differential immunocytochemical staining for fetuin and transferrin in the developing cortical plate. J. Neurocytol. 13:497–502.

    PubMed  Google Scholar 

  • Møllgård, K., Stagaard, M., and Saunders, N. R. (1987). Cellular distribution of transferrin immunoreactivity in the developing brain. Neurosci. Lett. 78:35–40.

    PubMed  Google Scholar 

  • Møllgård, K. Dziegielewska, K. M., Saunders, N. R., Zakut, H., and Soreq, H. (1988). Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin. Dev. Biol. 128:207–221.

    PubMed  Google Scholar 

  • Moos, T. (1995a). Age-dependent uptake and retrograde axonal transport of exogenous albumin and transferrin in rat motor neurons. Brain Res. 672:14–23.

    PubMed  Google Scholar 

  • Moos, T. (1995b). Increased accumulation of transferrin by motor neurons of the mouse mutant progressive motor neuronopathy (pmn/pmn). J. Neurocytol. 24:389–398.

    PubMed  Google Scholar 

  • Moos, T., and Höyer, P. E. (1996). Detection of plasma proteins in CNS neurons: conspicious influence of tissue-processing parameters and the utilization of serum for blocking nonspecific reactions. J. Histochem. Cytochem. 44:591–603.

    PubMed  Google Scholar 

  • Moos, T., and Morgan, E. H. (1998). Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat. Brain Res. 790:115–128.

    PubMed  Google Scholar 

  • Morgan, E. H. (1981). Transferrin, biochemistry, physiology and clinical significance. Mol. Aspects Med. 4:1–123.

    Google Scholar 

  • Morgan, E. H. (1983). Synthesis and secretion of transferrin. In Glaumann, H., Peters, T., and Redman, C. (eds.), Plasma Protein Secretion by the Liver, Academic Press, London, pp. 331–355.

    Google Scholar 

  • Morgan, E. H. (1996). Iron metabolism and transport. In Zakin, D., and Boyer, T. D. (eds.), Hepatology. A Textbook of Liver Disease, Vol. 1, 3rd ed., Saunders, Philadelphia, pp. 526–554.

    Google Scholar 

  • Morris, C. M., Candy, J. M., Bloxham, C. A., and Edwardson, J. A. (1992a). Immunocytochemical localisation of transferrin in the human brain. Acta Anat. 143:14–18.

    PubMed  Google Scholar 

  • Morris, C. M., Candy, J. M., Bloxham, C. A., and Edwardson, J. A. (1992b). Distribution of transferrin receptors in relation to cytochrome oxidase activity in the human spinal cord, lower brainstem and cerebellum. J. Neural Sci. 111:158–172.

    Google Scholar 

  • Morris, C. M., Kieth, A. B., Edwardson, J. A., and Pullen, R. G. L. (1992c). Uptake and distribution of iron and transferrin in the adult rat brain. J. Neurochem. 59:300–306.

    PubMed  Google Scholar 

  • New, H., Dziegielewska, K. M., and Saunders, N. R. (1983). Transferrin in fetal brain and cerebrospinal fluid. Int. J. Dev. Neurosci. 1:369–373.

    Google Scholar 

  • Oh, T. H., Markelonis, G. J., Royal, G. M., and Brezman, B. S. (1986). Immunocytochemical distribution of transferrin and its receptor in the developing chicken nervous system. Dev. Brain Res. 30:207–220.

    Google Scholar 

  • Ohe, Y. Ishikawa, K., Itoh, Z., and Tatemoto, K. (1996). Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J. Neurochem. 67:964–971.

    PubMed  Google Scholar 

  • Orita, T., Akimura, T., Nishizaki, T., Kamiryo, T., Ikeyama, Y., Aoki, H., and Ito, H. (1990). Transferrin receptors in injured brain. Acta. neuropathol. 79:686–688.

    PubMed  Google Scholar 

  • Ozawa, E. (1989). Transferrin as a muscle trophic factor. Rev. Physiol. Biochem. Pharmacol. 113:90–141.

    Google Scholar 

  • Pardrige, W. M. (1988). Recent advances in blood brain barrier transport. Ann. Rev. Pharmacol. Toxicol. 28:25–39.

    Google Scholar 

  • Pardridge, W. M., Eisenberg, J., and Yang, Y. (1987). Human blood-brain barrier transferrin receptor. Metabolism 36:892–895.

    PubMed  Google Scholar 

  • Pardridge, W. M., Buciak, J. L., and Friden, P. M. (1991). Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259:66–70.

    PubMed  Google Scholar 

  • Petroff, O. A. C., Yu, R. K., and Ogino M. L., and Møllgård, K. (1985). The distribution of plasma proteins in the neocortex and early allocortex of the developing sheep brain. Anat. Embryol. 171:41–60.

    PubMed  Google Scholar 

  • Risau, W., Hallmann, R., and Albrecht, U. (1986). Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev. Biol. 117:537–545.

    PubMed  Google Scholar 

  • Roberts, R., Sandra, A., Siek, G. C., Lucas, J. J., and Fine, R. E. (1992). Studies on the mechanism of iron transport across the blood-brain barrier. Ann. Neurol. 32:543–550.

    PubMed  Google Scholar 

  • Roberts, R., Fine, R. E., and Sandra, A. (1993). Receptor-mediated endocytosis of transferrin at the blood-brain barrier. J. Cell Sci. 104:521–532.

    PubMed  Google Scholar 

  • Roskams, A. J. I., and Connor, J. R. (1994). Iron, transferrin and ferritin in the rat brain during development and aging. J. Neurochem. 83:709–716.

    Google Scholar 

  • Rothenberger, S., Food, M. R., Gabathuler, R., Kennard, M. L., Yamada, T., Yasuhara, O., McGeer, P. L., and Jefferies, W. A. (1996). Coincident expression and distribution of melanotransferrin and transferrin receptor in human brain capillary endothelial cells. Brain Res. 712:117–121.

    PubMed  Google Scholar 

  • Shin, S.-V., Friden, P., Moran, M., Olson, T., Kang, Y.-S., Pardridge, W. M., and Morrison, S. L. (1995). Transferrin-antibody fusion proteins are effective in brain targeting. Proc. Natl. Acad. Sci. USA 92:2820–2824.

    PubMed  Google Scholar 

  • Skarlatos, S., Yoshikawa, T., and Pardridge, W. M. (1995). Transport of [125I] transferrin through the rat blood-brain barrier. Brain Res. 683:164–171.

    PubMed  Google Scholar 

  • Skinner, M. K., and Griswold, M. D. (1980). Sertoli cells synthesize and secrete transferrin-like proteins. J. Biol. Chem. 255:9523–9525.

    PubMed  Google Scholar 

  • Sonnewald, U., Westergaard, N., Krane, J., Unsgård, G., Petersen, S. B., and Schouboe, A. (1991). First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci. Lett. 128:235–239.

    PubMed  Google Scholar 

  • Strahan, M. E., Crowe, A., and Morgan, E. H. (1992). Iron uptake in relation to transferrin degradation in brain and other tissues of rats. Am. J. Physiol. 263:R924-R929.

    PubMed  Google Scholar 

  • Swaiman, K. F., and Machen, V. L. (1984). Iron uptake by mammalian cortical neurons. Ann. Neurol. 16:66–70.

    PubMed  Google Scholar 

  • Swaiman, K. F., and Machen, V. L. (1985). Iron uptake by glial cells. Neurochem. Res. 10:1635–1644.

    PubMed  Google Scholar 

  • Swaiman, K. F., and Machen, V. L. (1986a). Chloroquine reduces neuronal and glial iron uptake. J. Neurochem. 46:652–654.

    PubMed  Google Scholar 

  • Swaiman, K. F., and Machen, V. L. (1986b). Transferrin binding by mammalian cortical cells. Neurochem. Res. 11:1241–1248.

    PubMed  Google Scholar 

  • Szentistvanyi, I., Patlak, C. S., Ellis, A., and Cserr, H. (1984). Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246:F835-F844.

    PubMed  Google Scholar 

  • Taylor, E. M., and Morgan, E. H. (1990). Developmental changes in transferrin and iron uptake by the brain in the rat. Dev. Brain Res. 55:35–42.

    Google Scholar 

  • Taylor, E. M., and Morgan, E. H. (1991). Role of transferrin in iron uptake by the brain: A comparative study. J. Comp. Physiol. B 161:521–524.

    PubMed  Google Scholar 

  • Taylor, E. M., Crowe, A., and Morgan E. H. (1991). Transferrin and iron uptake by the brain: Effects of altered iron status. J. Neurochem. 57:1584–1592.

    PubMed  Google Scholar 

  • Theisen, M., Behringer, R. R., Cadd, G. G. Brinster, R. L., and McKnight, G. S. (1993). A C/EBP binding site in the transferrin promoter is essential for expression in the liver but not in the brain of transgenic mice. Mol. Cell. Biol. 13:7666–7676.

    PubMed  Google Scholar 

  • Thomas, T., Schreiber, G., and Javorowski, A. (1989). Developmental patterns of gene expression of secreted proteins in brain and choroid plexus. Dev. Biol. 134:38–47.

    PubMed  Google Scholar 

  • Thorstensen, K. (1988). Hepatocytes and reticulocytes have different mechanisms for the uptake of iron from transferrin. J. Biol. Chem. 263:16837–16841.

    PubMed  Google Scholar 

  • Toran-Allerand, C. D. (1980). Coexistence of a-fetoprotein, albumin and transferrin immunoreactivity in neurones of the developing mouse brain. Nature 286:733–735.

    PubMed  Google Scholar 

  • Tu, G.-F., Achen, M. G., Alred, A. R., Southwell, B. R., and Schreiber, G. (1991). The distribution of cerebral expression of the transferrin gene is species specific. J. Biol. Chem. 266:6201–6208.

    PubMed  Google Scholar 

  • Ueda, F., Raja, K. B., Simpson, R. J., Trowbridge, T. S., and Bradbury, M. W. B. (1993). Rate of 59Fe uptake into the brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor. J. Neurochem. 60:106–113.

    PubMed  Google Scholar 

  • Wagner, H.-J., Pilgrim, C.-H., and Brandl, J. (1974). Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: Role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 27:199–215.

    Google Scholar 

  • Westergaard, N., Sonnewald, U., Unsgård, G., Peng, L., Hertz, L., and Schousbol, A. (1994). Uptake, release and metabolism of citrate in neurons and astrocytes in primary culture. J. Neurochem. 62:1727–1733.

    PubMed  Google Scholar 

  • Zahs, K., Bigornia, V., and Deschepper, C. F. (1993). Characterization of “plasma proteins” secreted by cultured rat macroglial cells. Glia 7:121–133.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moos, T., Morgan, E.H. Transferrin and Transferrin Receptor Function in Brain Barrier Systems. Cell Mol Neurobiol 20, 77–95 (2000). https://doi.org/10.1023/A:1006948027674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006948027674

Navigation