Skip to main content
Log in

Fluctuation Theorem for Heat Flow

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conduction in a classical many-body system which is in contact with two isothermal reservoirs maintained at different temperatures is considered. The probability that when observed for a finite time, the heat flux of a finite system flows in the reverse direction to that required by the Second Law of Thermodynamics is calculated from first principles. Analytical expressions are given for the probability of observing Second Law violating fluctuations in this system. These expressions constitute an application of the fluctuation theorem to the problem of thermal conduction. The expressions are tested using nonequilibrium molecular dynamics simulations of heat flow between thermostated walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett. 71:2401 (1993).

    Google Scholar 

  2. D. J. Evans and D. J. Searles, Phys. Rev. E 50:1645 (1994); D. J. Evans and D. J. Searles, Phys. Rev. E 52:5839 (1995); D. J. Evans and D. J. Searles, Phys. Rev. E 53:5808 (1996); D. J. Searles and D. J. Evans, J. Chem. Phys. 112:9727 (2000); D. J. Searles and D. J. Evans, J. Chem. Phys. 113:3503 (2000).

    Google Scholar 

  3. G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80:931 (1995); G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2694 (1995).

    Google Scholar 

  4. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95:333 (1999); C. Maes, J. Stat. Phys. 95:367 (1999); J. Kurchan, J. Phys. A 31:3719 (1998); F. Bonetto, G. Gallavotti, and P. L. Garrido, Physica D 105:226 (1997); F. Bonetto, N. I. Chernov, and J. L. Lebowitz, Chaos 8:823 (1998).

    Google Scholar 

  5. G. Ayton, D. J. Evans, and D. J. Searles, submitted for publication.

  6. S. Lepri, R. Livi, and A. Politi, Physica D 119:140 (1998).

    Google Scholar 

  7. T. Yamada and K. Kawasaki, Prog. Theor. Phys. 38:1031 (1967).

    Google Scholar 

  8. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Fluids (Academic Press, London, 1990).

    Google Scholar 

  9. G. Ayton and D. J. Evans, J. Stat. Phys. 97:811 (1999); E. G. D. Cohen and G. Gallavotti, J. Stat. Phys. 96:1343 (1999).

    Google Scholar 

  10. J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys. 54:5237 (1985).

    Google Scholar 

  11. B. D. Todd, D. J. Evans, and P. J. Daivis, Phys. Rev. E 52:1627 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Searles, D.J., Evans, D.J. Fluctuation Theorem for Heat Flow. International Journal of Thermophysics 22, 123–134 (2001). https://doi.org/10.1023/A:1006759703505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006759703505

Navigation